Previous |  Up |  Next

Article

Title: Uniqueness of $q$-shift difference polynomials of meromorphic functions sharing a small function (English)
Author: Dyavanal, Renukadevi S.
Author: Desai, Rajalaxmi V.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 3
Year: 2020
Pages: 241-253
Summary lang: English
.
Category: math
.
Summary: We investigate the uniqueness of a $q$-shift difference polynomial of meromorphic functions sharing a small function which extend the results of N. V. Thin (2017) to $q$-difference operators. (English)
Keyword: Nevanlinna theory
Keyword: meromorphic function
Keyword: $q$-shift difference polynomial
Keyword: uniqueness
MSC: 30D35
idZBL: 07250708
idMR: MR4221832
DOI: 10.21136/MB.2019.0093-18
.
Date available: 2020-09-14T15:00:19Z
Last updated: 2021-04-19
Stable URL: http://hdl.handle.net/10338.dmlcz/148347
.
Reference: [1] Dyavanal, R. S., Desai, R. V.: Uniqueness of $q$-difference and differential polynomials of entire functions.Math. Sci. Int. Research J. 4 (2015), 267-271.
Reference: [2] Dyavanal, R. S., Desai, R. V.: Uniqueness of $q$-shift difference and differential polynomials of entire functions.Far East J. Appl. Math. 91 (2015), 189-202. Zbl 1332.30049, 10.17654/FJAMJun2015_189_202
Reference: [3] Dyavanal, R. S., Desai, R. V.: Uniqueness of product of difference polynomials of meromorphic functions sharing fixed point with finite weight.Glob. J. Pure Appl. Math. 14 (2018), 331-346. MR 3889312
Reference: [4] Dyavanal, R. S., Hattikal, A. M.: Weighted sharing of difference-differential polynomials of entire functions.Math. Sci. Int. Research J. 4 (2015), 276-280.
Reference: [5] Dyavanal, R. S., Hattikal, A. M.: Weighted sharing of uniqueness of difference polynomials of meromorphic functions.Far East J. Math. Sci. (FJMS) 98 (2015), 293-313. Zbl 1336.30049, 10.17654/FJMSOct2015_293_313
Reference: [6] Dyavanal, R. S., Hattikal, A. M.: On the uniqueness of product of difference polynomials of meromorphic functions.Konuralp J. Math. 4 (2016), 42-55. Zbl 1355.30029, MR 3571505
Reference: [7] Dyavanal, R. S., Hattikal, A. M.: Unicity theorems on difference polynomials of meromorphic functions sharing one value.Int. J. Pure Appl. Math. Sci. 9 (2016), 89-97.
Reference: [8] Dyavanal, R. S., Hattikal, A. M.: Uniqueness of $q$-shift difference polynomials of meromorphic functions sharing a small function.New Trends Math. Sci. 5 (2017), 250-263. MR 3681536, 10.20852/ntmsci.2017.144
Reference: [9] Hayman, W. K.: Meromorphic Functions.Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). Zbl 0115.06203, MR 0164038
Reference: [10] Lin, W.-C., Yi, H.-X.: Uniqueness theorems for meromorphic function.Indian J. Pure Appl. Math. 35 (2004), 121-132. Zbl 1056.30031, MR 2040726
Reference: [11] Liu, K., Qi, X.-G.: Meromorphic solutions of $q$-shift difference equations.Ann. Pol. Math. 101 (2011), 215-225. Zbl 1235.30023, MR 2799584, 10.4064/ap101-3-2
Reference: [12] Thin, N. V.: Uniqueness of meromorphic functions and $Q$-differential polynomials sharing small functions.Bull. Iran. Math. Soc. 43 (2017), 629-647. Zbl 1405.30032, MR 3670885
Reference: [13] Xu, J., Zhang, X.: The zeros of $q$-shift difference polynomials of meromorphic functions.Adv. Difference Equ. 2012 (2012), Paper No. 200, 10 pages. Zbl 1377.30029, MR 3016706, 10.1186/1687-1847-2012-200
Reference: [14] Yang, C. C., Yi, H. X.: Uniqueness Theory of Meromorphic Functions.Mathematics and Its Applications 557. Kluwer Academic Publishers, Dordrecht (2003). Zbl 1070.30011, MR 2105668
Reference: [15] Yang, L.: Value Distribution Theory.Springer, Berlin; Science Press, Beijing (1993). Zbl 0790.30018, MR 1301781, 10.1007/978-3-662-02915-2
Reference: [16] Zhang, X.: Value sharing of meromorphic functions and some questions of Dyavanal.Front. Math. China 7 (2012), 161-176. Zbl 1267.30084, MR 2876905, 10.1007/s11464-012-0172-y
Reference: [17] Zhao, Q., Zhang, J.: Zeros and shared one value of $q$-shift difference polynomials.J. Contemp. Math. Anal., Armen. Acad. Sci. 50 (2015), 63-69. Zbl 1336.30056, MR 3444037, 10.3103/S1068362315020028
.

Files

Files Size Format View
MathBohem_145-2020-3_2.pdf 272.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo