Previous |  Up |  Next

Article

Title: On the class of b-L-weakly and order M-weakly compact operators (English)
Author: Lhaimer, Driss
Author: Moussa, Mohammed
Author: Bouras, Khalid
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 3
Year: 2020
Pages: 255-264
Summary lang: English
.
Category: math
.
Summary: In this paper, we introduce and study new concepts of b-L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of KB-spaces. (English)
Keyword: L-weakly compact operator
Keyword: M-weakly compact operator
Keyword: b-order bounded operator
Keyword: b-weakly compact operator
Keyword: b-L-weakly compact operator
Keyword: order M-weakly compact operator
Keyword: KB-space
MSC: 46B25
MSC: 46B42
MSC: 47B60
MSC: 47B65
idZBL: 07250709
idMR: MR4221833
DOI: 10.21136/MB.2019.0116-18
.
Date available: 2020-09-14T15:00:42Z
Last updated: 2021-04-19
Stable URL: http://hdl.handle.net/10338.dmlcz/148348
.
Reference: [1] Aliprantis, C. D., Burkinshaw, O.: On weakly compact operators on Banach lattices.Proc. Am. Math. Soc. 83 (1981), 573-578. Zbl 0452.47038, MR 0627695, 10.2307/2044122
Reference: [2] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Springer, Dordrecht (2006). Zbl 1098.47001, MR 2262133, 10.1007/978-1-4020-5008-4
Reference: [3] Alpay, S., Altin, B., Tonyali, C.: On property (b) of vector lattices.Positivity 7 (2003), 135-139. Zbl 1036.46018, MR 2028377, 10.1023/A:1025840528211
Reference: [4] Alpay, S., Altin, B., Tonyali, C.: A note on Riesz spaces with property-$b$.Czech. Math. J. 56 (2006), 765-772. Zbl 1164.46310, MR 2291773, 10.1007/s10587-006-0054-0
Reference: [5] Dodds, P. G.: $o$-weakly compact mappings of Riesz spaces.Trans. Am. Math. Soc. 214 (1975), 389-402. Zbl 0313.46011, MR 0385629, 10.2307/1997114
Reference: [6] Meyer-Nieberg, P.: Über Klassen schwach kompakter Operatoren in Banachverbanden.Math. Z. 138 (1974), 145-159 German. Zbl 0291.47020, MR 0353053, 10.1007/BF01214230
Reference: [7] Meyer-Nieberg, P.: Banach Lattices.Universitext. Springer, Berlin (1991). Zbl 0743.46015, MR 1128093, 10.1007/978-3-642-76724-1
Reference: [8] Zaanen, A. C.: Riesz Spaces II.North-Holland Mathematical Library, Volume 30. North-Holland, Amsterdam (1983). Zbl 0519.46001, MR 0704021, 10.1016/s0924-6509(08)x7015-1
.

Files

Files Size Format View
MathBohem_145-2020-3_3.pdf 261.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo