Previous |  Up |  Next

Article

Title: On a singular multi-point third-order boundary value problem on the half-line (English)
Author: Benbaziz, Zakia
Author: Djebali, Smail
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 3
Year: 2020
Pages: 305-324
Summary lang: English
.
Category: math
.
Summary: We establish not only sufficient but also necessary conditions for existence of solutions to a singular multi-point third-order boundary value problem posed on the half-line. Our existence results are based on the Krasnosel'skii fixed point theorem on cone compression and expansion. Nonexistence results are proved under suitable a priori estimates. The nonlinearity $f=f(t,x,y)$ which satisfies upper and lower-homogeneity conditions in the space variables $x, y$ may be also singular at time $t=0$. Two examples of applications are included to illustrate the existence theorems. (English)
Keyword: singular nonlinear boundary value problem
Keyword: positive solution
Keyword: Krasnosel'skii fixed point theorem
Keyword: multi-point
Keyword: half-line
MSC: 34B10
MSC: 34B16
MSC: 34B18
MSC: 34B40
idZBL: 07250712
idMR: MR4221836
DOI: 10.21136/MB.2019.0084-18
.
Date available: 2020-09-14T15:02:28Z
Last updated: 2021-04-19
Stable URL: http://hdl.handle.net/10338.dmlcz/148351
.
Reference: [1] Agarwal, R. P., O'Regan, D.: Infinite Interval Problems for Differential, Difference and Integral Equations.Kluwer Academic Publishers, Dordrecht (2001). Zbl 0988.34002, MR 1845855, 10.1007/978-94-010-0718-4
Reference: [2] Chen, S., Zhang, Y.: Singular boundary value problems on a half-line.J. Math. Anal. Appl. 195 (1995), 449-468. Zbl 0852.34019, MR 1354555, 10.1006/jmaa.1995.1367
Reference: [3] Corduneanu, C.: Integral Equations and Stability of Feedback Systems.Mathematics in Science and Engineering 104. Academic Press, New York (1973). Zbl 0273.45001, MR 0358245, 10.1016/s0076-5392(08)x6099-0
Reference: [4] Djebali, S., Mebarki, K.: Multiple positive solutions for singular BVPs on the positive half-line.Comput. Math. Appl. 55 (2008), 2940-2952. Zbl 1142.34316, MR 2401442, 10.1016/j.camwa.2007.11.023
Reference: [5] Djebali, S., Saifi, O.: Third order BVPs with $\phi$-Laplacian operators on $[0,+\infty)$.Afr. Diaspora J. Math. 16 (2013), 1-17. Zbl 1283.34019, MR 3091711
Reference: [6] Guo, D. J., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones.Notes and Reports in Mathematics in Science and Engineering 5. Academic Press, Boston (1988). Zbl 0661.47045, MR 0959889, 10.1016/c2013-0-10750-7
Reference: [7] Liang, S., Zhang, J.: Positive solutions for singular third-order boundary value problem with dependence on the first order derivative on the half-line.Acta Appl. Math. 111 (2010), 27-43. Zbl 1203.34038, MR 2653048, 10.1007/s10440-009-9528-z
Reference: [8] Liu, Y.: Existence and unboundedness of positive solutions for singular boundary value problems on half-line.Appl. Math. Comput. 144 (2003), 543-556. Zbl 1036.34027, MR 1994092, 10.1016/S0096-3003(02)00431-9
Reference: [9] Wei, Z.: A necessary and sufficient condition for the existence of positive solutions of singular super-linear $m$-point boundary value problems.Appl. Math. Comput. 179 (2006), 67-78. Zbl 1166.34305, MR 2260858, 10.1016/j.amc.2005.11.077
Reference: [10] Wei, Z.: Some necessary and sufficient conditions for existence of positive solutions for third order singular super-linear multi-point boundary value problems.J. Appl. Math. Comput. 46 (2014), 407-422. Zbl 1311.34052, MR 3252121, 10.1007/s12190-014-0756-7
Reference: [11] Yan, B., O'Regan, D., Agarwal, R. P.: Unbounded positive solutions for second order singular boundary value problems with derivative dependence on infinite intervals.Funkc. Ekvacioj, Ser. Int. 51 (2008), 81-106. Zbl 1158.34011, MR 2427544, 10.1619/fesi.51.81
.

Files

Files Size Format View
MathBohem_145-2020-3_6.pdf 324.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo