Previous |  Up |  Next

Article

Title: Uniqueness of meromorphic functions concerning value sharing of nonlinear differential monomials (English)
Author: Majumder, Sujoy
Author: Mandal, Rajib
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 3
Year: 2020
Pages: 281-304
Summary lang: English
.
Category: math
.
Summary: With the idea of normal family we study the uniqueness of meromorphic functions $f$ and $g$ when $f^{n}(f^{(k)})^{m}-p$ and $g^{n}(g^{(k)})^{m}-p$ share two values, where $p$ is any nonzero polynomial. The result of this paper significantly improves and generalizes the result due to A. Banerjee and S. Majumder (2018). (English)
Keyword: uniqueness
Keyword: meromorphic function
Keyword: small function
Keyword: nonlinear differential polynomial
Keyword: normal family
MSC: 30D30
MSC: 30D35
idZBL: 07250711
idMR: MR4221835
DOI: 10.21136/MB.2019.0010-18
.
Date available: 2020-09-14T15:02:00Z
Last updated: 2021-04-19
Stable URL: http://hdl.handle.net/10338.dmlcz/148350
.
Reference: [1] Alzahary, T. C., Yi, H. X.: Weighted value sharing and a question of I. Lahiri.Complex Variables, Theory Appl. 49 (2004), 1063-1078. Zbl 1067.30055, MR 2111304, 10.1080/02781070410001701074
Reference: [2] Banerjee, A.: On a question of Gross.J. Math. Anal. Appl. 327 (2007), 1273-1283. Zbl 1115.30029, MR 2280003, 10.1016/j.jmaa.2006.04.078
Reference: [3] Banerjee, A., Majumder, S.: On certain non-linear differential polynomial sharing a non-zero polynomial.Bol. Soc. Mat. Mex., III. Ser. 24 (2018), 155-180. Zbl 1390.30036, MR 3773104, 10.1007/s40590-016-0156-0
Reference: [4] Bergweiler, W., Eremenko, A.: On the singularities of the inverse to a meromorphic function of finite order.Rev. Mat. Iberoam. 11 (1995), 355-373. Zbl 0830.30016, MR 1344897, 10.4171/RMI/176
Reference: [5] Cao, Y.-H., Zhang, X.-B.: Uniqueness of meromorphic functions sharing two values.J. Inequal. Appl. 2012 (2012), Paper No. 100, 10 pages. Zbl 1291.30193, MR 2946490, 10.1186/1029-242X-2012-100
Reference: [6] Chang, J., Zalcman, L.: Meromorphic functions that share a set with their derivatives.J. Math. Anal. Appl. 338 (2008), 1020-1028. Zbl 1160.30014, MR 2386477, 10.1016/j.jmaa.2007.05.079
Reference: [7] Chen, H., Fang, M.: The value distribution of $f\sp n f'$.Sci. China, Ser. A 38 (1995), 789-798. Zbl 0839.30026, MR 1360682
Reference: [8] Dou, J., Qi, X.-G., Yang, L.-Z.: Entire functions that share fixed-points.Bull. Malays. Math. Sci. Soc. (2) 34 (2011), 355-367. Zbl 1216.30033, MR 2788409
Reference: [9] Fang, M., Hua, X.: Entire functions that share one value.J. Nanjing Univ., Math. Biq. 13 (1996), 44-48. Zbl 0899.30022, MR 1411806
Reference: [10] Fang, M., Qiu, H.: Meromorphic functions that share fixed-points.J. Math. Anal. Appl. 268 (2002), 426-439. Zbl 1030.30028, MR 1896207, 10.1006/jmaa.2000.7270
Reference: [11] Hayman, W. K.: Meromorphic Functions.Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). Zbl 0115.06203, MR 0164038
Reference: [12] Köhler, L.: Meromorphic functions sharing zeros and poles and also some of their derivatives sharing zeros.Complex Variables, Theory Appl. 11 (1989), 39-48. Zbl 0637.30029, MR 0998240, 10.1080/17476938908814322
Reference: [13] Lahiri, I.: Weighted sharing and uniqueness of meromorphic functions.Nagoya Math. J. 161 (2001), 193-206. Zbl 0981.30023, MR 1820218, 10.1017/S0027763000027215
Reference: [14] Lahiri, I.: Weighted value sharing and uniqueness of meromorphic functions.Complex Variables, Theory Appl. 46 (2001), 241-253. Zbl 1025.30027, MR 1869738, 10.1080/17476930108815411
Reference: [15] Lahiri, I., Dewan, S.: Inequalities arising out of the value distribution of a differential monomial.JIPAM, J. Inequal. Pure Appl. Math. 4 (2003), Paper No. 27, 6 pages. Zbl 1126.30309, MR 1994240
Reference: [16] Lahiri, I., Dewan, S.: Value distribution of the product of a meromorphic function and its derivative.Kodai Math. J. 26 (2003), 95-100. Zbl 1077.30025, MR 1966685, 10.2996/kmj/1050496651
Reference: [17] Lahiri, I., Sarkar, A.: Nonlinear differential polynomials sharing 1-points with weight two.Chin. J. Contemp. Math. 25 (2004), 325-334. Zbl 1069.30051, MR 2159311
Reference: [18] Lin, W., Yi, H. X.: Uniqueness theorems for meromorphic functions concerning fixed-point.Complex Variables, Theory Appl. 49 (2004), 793-806. Zbl 1067.30065, MR 2097218, 10.1080/02781070412331298624
Reference: [19] Pang, X. C.: Normality conditions for differential polynomials.Kexue Tongbao, Sci. Bull. 33 (1988), 1690-1693. Zbl 1382.30060, MR 0999887
Reference: [20] Schiff, J. L.: Normal Families.Universitext. Springer, New York (1993). Zbl 0770.30002, MR 1211641, 10.1007/978-1-4612-0907-2
Reference: [21] Xu, J., Yi, H., Zhang, Z.: Some inequalities of differential polynomials.Math. Inequal. Appl. 12 (2009), 99-113. Zbl 1169.30314, MR 2489354, 10.7153/mia-12-09
Reference: [22] Yamanoi, K.: The second main theorem for small functions and related problems.Acta Math. 192 (2004), 225-294. Zbl 1203.30035, MR 2096455, 10.1007/BF02392741
Reference: [23] Yang, C. C.: On deficiencies of differential polynomials. II.Math. Z. 125 (1972), 107-112. Zbl 0217.38402, MR 0294642, 10.1007/BF01110921
Reference: [24] Yang, C.-C., Hua, X.: Uniqueness and value-sharing of meromorphic functions.Ann. Acad. Sci. Fenn., Math. 22 (1997), 395-406. Zbl 0890.30019, MR 1469799
Reference: [25] Yang, C.-C., Yi, H.-X.: Uniqueness Theory of Meromorphic Functions.Mathematics and Its Applications 557. Kluwer Academic Publishers, Dordrecht (2003). Zbl 1070.30011, MR 2105668, 10.1007/978-94-017-3626-8
Reference: [26] Yi, H. X.: On characteristic function of a meromorphic function and its derivative.Indian J. Math. 33 (1991), 119-133. Zbl 0799.30018, MR 1140875
Reference: [27] Zalcman, L.: A heuristic principle in complex function theory.Am. Math. Mon. 82 (1975), 813-817. Zbl 0315.30036, MR 0379852, 10.2307/2319796
Reference: [28] Zhang, J.: Uniqueness theorems for entire functions concerning fixed points.Comput. Math. Appl. 56 (2008), 3079-3087. Zbl 1165.30362, MR 2474563, 10.1016/j.camwa.2008.07.006
Reference: [29] Zhang, Q.: Meromorphic function that shares one small function with its derivative.JIPAM, J. Inequal. Pure Appl. Math. 6 (2005), Article No. 116, 13 pages. Zbl 1097.30033, MR 2178297
Reference: [30] Zhang, T., Lü, W.: Uniqueness theorems on meromorphic functions sharing one value.Comput. Math. Appl. 55 (2008), 2981-2992. Zbl 1142.30330, MR 2401445, 10.1016/j.camwa.2007.11.029
Reference: [31] Zhang, X.-Y., Lin, W.-C.: Corrigendum to ``Uniqueness and value-sharing of entire functions''.J. Math. Anal. Appl. 352 (2009), page 971. Zbl 1160.30345, MR 2501943, 10.1016/j.jmaa.2008.10.051
.

Files

Files Size Format View
MathBohem_145-2020-3_5.pdf 366.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo