Previous |  Up |  Next

Article

MSC: 01A70, 52-01, 52C17
Full entry | Fulltext not available (moving wall 12 months)      Feedback
Summary:
Angloamerický matematik John Horton Conway byl všestrannou a charismatickou postavou, která významně ovlivnila teorie čísel, grup, her, uzlů, dynamických systémů i rekreační matematiku. Proslul svéráznou povahou i nekonvenčním přístupem k řešení problémů. Tento článek shrnuje stručně jeho neobvyklou životní cestu a představuje čtyři vybrané oblasti z jeho bohaté tvorby: nadreálná čísla, teorii kombinatorických her, hru života a klasifikaci sporadických grup.
References:
[1] Adamatzky, A.: Collision-based computing. Springer, 2002. MR 2104364
[2] Albers, D.: Remembering Richard K. Guy and John Horton Conway. Dostupné z  https://think.taylorandfrancis.com/richard-guy-and-john-conway/ [cit. 3. 8. 2020]. MR 0680924
[3] Albert, M. H., Nowakowski, R. J., Wolfe, D.: Lessons in play: An introduction to combinatorial game theory. AK Peters, 2019.
[4] Alling, N. L.: Fundamentals of analysis over surreal number fields. Quadratic Forms and Real Algebraic Geometry 19 (1989), 565–573. MR 1043230
[5] Aschbacher, M.: The status of the classification of the finite simple groups. Notices Amer. Math. Soc. 51 (2004), 736–740. MR 2072045
[6] Bak, P.: How nature works: The science of self-organized criticality. Springer, 1999. MR 1417042
[7] Berlekamp, E. R., Conway, J. H., Guy, R. K.: Winning ways for your mathematical plays. Taylor & Francis Inc, 2001. MR 1959113
[8] Carter, N.: Visual group theory. Mathematical Association of America, 2009. MR 2504193
[9] Cihlář, J., Vopravil, V.: Hry a čísla. PF UJEP, Ústí nad Labem, 1995.
[10] Cohn, H., Kumar, A., Miller, S. D., Radchenko, D., Viazovska, M.: The sphere packing problem in dimension 24. Ann. of Math. 185 (2017), 1017–1033. DOI 10.4007/annals.2017.185.3.8 | MR 3664817
[11] Conway, J.: On numbers and games. Academic Press, 1976. MR 0450066
[12] Conway, J. H.: All numbers, great and small. The Univ. of Calgary Math. Res. Paper 149 (1972).
[13] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of finite groups. Oxford University Press, 1985. MR 0827219 | Zbl 0568.20001
[14] Conway, J. H., Norton, S. P.: Monstrous moonshine. Bull. Lond. Math. Soc. 11 (1979), 308–339. DOI 10.1112/blms/11.3.308 | MR 0554399
[15] Cook, M.: Universality in elementary cellular automata. Complex Systems 15 (2004), 1–40. MR 2211290
[16] Costin, O., Ehrlich, P., Frideman, H. M.: Integration on the surreals: a conjecture of Conway, Kruskal and Norton. Dostupné z arXiv: 1505.02478 (2015).
[17] Drápal, A.: Teorie grup: základní aspekty. Karolinum, 2000.
[18] Epstein, J., Axtell, R.: Growing artificial societies. MIT Press, 1996.
[19] Gardner, M.: Mathematical games. Scientific American 223 (1970), 120–123. DOI 10.1038/scientificamerican1070-120
[20] Gorenstein, D.: Classifying the finite simple groups. Bull. Amer. Math. Soc. (N.S.) 14 (1986), 1–98. DOI 10.1090/S0273-0979-1986-15392-9 | MR 0818060
[21] Griess, R. L., Jr.: The structure of the “monster” simple group. In: Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975), 1976, 113–118. MR 0399248
[22] Haff, L. R., Garner, W. J.: An introduction to combinatorial game theory. Lulu.com, 2018.
[23] Horgan, J.: The death of proof. Scientific American 4 (1993), 93–103. MR 1254647
[24] Khovanova, T.: Conway's wizards. Dostupné z arXiv: 1210.5460 (2012). MR 3133759
[25] Kline, M.: Mathematical thought from ancient to modern times, Vol. 3. The Clarendon Press, Oxford University Press, New York, 1990. MR 1058203
[26] Knuth, D.: Surreal numbers: how two ex-students turned on to pure mathematics and found total happiness: a mathematical novelette. Addison-Wesley, 1974. MR 0472278
[27] Knuth, D.: Nadreálná čísla. Pokroky Mat. Fyz. Astronom. 23 (1978), 66–76, 130–139, 187–196, 246–261. (Překlad: Helena Nešetřilová.)
[28] Křížek, M., Somer, L.: Abelova cena v roce 2008 udělena za objevy v teorii neabelovských grup. Pokroky Mat. Fyz. Astronom. 53 (2008), 177–187.
[29] von Neumann, J.: The general and logical theory of automata. In: Cerebral Mechanisms in Behavior. The Hixon Symposium. John Wiley & Sons, 1951, 1–31. MR 0045446
[30] Pfender, F., Ziegler, G. M.: Kissing numbers, sphere packings, and some unexpected proofs. Notices Amer. Math. Soc. 51 (2004), 873–883. MR 2145821
[31] Pravda, V.: Maticové Lieovy grupy a Lieovy algebry. Pokroky Mat. Fyz. Astronom. 52 (2007), 219–230.
[32] Roberts, S.: Genius at play: the curious mind of John Horton Conway. Bloomsbury, 2015. MR 3329687
[33] Ronan, M.: Symmetry and the monster. Oxford University Press, 2006. MR 2215662
[34] Siegel, A.: Combinatorial game suite. Dostupné z http://cgsuite.sourceforge.net/, 2011.
[35] Siegel, A.: Combinatorial games theory. Grad. Stud. Math. 146. AMS, 2013. DOI 10.1090/gsm/146/01 | MR 3097920
[36] Solomon, R.: A brief history of the classification of the finite simple groups. Bull. Amer. Math. Soc. (N.S.) 38 (2001), 315–352. DOI 10.1090/S0273-0979-01-00909-0 | MR 1824893
[37] Šarkovskiĭ, O. M.: Co-existence of cycles of a continuous mapping of the line into itself. Ukraïn. Mat. Zh. 16 (1964), 61–71. MR 0159905
[38] Turing, A. M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. 42 (1936), 230–265. MR 1577030
[39] de Vries, G., Hillen, T., Lewis, M., Müller, J., Schönfisch, B.: A course in mathematical biology. SIAM, vol. 12, 2006. MR 2242784
[40] Wolfram, S.: A new kind of science. Wolfram Media, 2002. MR 1920418
Partner of
EuDML logo