[1] Bauer, F. L.: qd-method with Newton shift. Technical Report 56. Computer Science Department, Stanford University, Stanford (1967).
[3] Fukuda, A., Ishiwata, E., Yamamoto, Y., Iwasaki, M., Nakamura, Y.: 
Integrable discrete hungry systems and their related matrix eigenvalues. Ann. Mat. Pura Appl. 192 (2013), 423-445. 
DOI 10.1007/s10231-011-0231-0 | 
MR 3061107 | 
Zbl 1349.37064[4] Fukuda, A., Yamamoto, Y., Iwasaki, M., Ishiwata, E., Nakamura, Y.: 
Error analysis for matrix eigenvalue algorithm based on the discrete hungry Toda equation. Numer. Algorithms 61 (2012), 243-260. 
DOI 10.1007/s11075-012-9606-6 | 
MR 2969294 | 
Zbl 1257.65019[5] Fukuda, A., Yamamoto, Y., Iwasaki, M., Ishiwata, E., Nakamura, Y.: 
On a shifted $LR$ transformation derived from the discrete hungry Toda equation. Monatsh. Math. 170 (2013), 11-26. 
DOI 10.1007/s00605-012-0404-y | 
MR 3032671 | 
Zbl 1311.65036[6] Golub, G. H., Loan, C. F. Van: 
Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore (2013). 
MR 3024913 | 
Zbl 1268.65037[14] Sun, J.-Q., Hu, X.-B., Tam, H.-W.: 
Short note: An integrable numerical algorithm for computing eigenvalues of a specially structured matrix. Numer. Linear Algebra Appl. 18 (2011), 261-274. 
DOI 10.1002/nla.754 | 
MR 2791246 | 
Zbl 1249.65079