Article
Keywords:
contex-free languages; pumping lemma
Summary:
Suppose that some polynomial $f$ with rational coefficients takes only natural values at natural numbers, i. e., $L=\{f(n)\mid n\in {\mathbb N}\}\subseteq {\mathbb N}$. We show that the base-$q$ representation of $L$ is a context-free language if and only if $f$ is linear, answering a question of Shallit. The proof is based on a new criterion for context-freeness, which is a combination of the Interchange lemma and a generalization of the Pumping lemma.
References:
[1] Bar-Hillel, Y., Perles, M. A., Shamir, E.:
On formal properties of simple phrase-structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft, und Kommunikationsforschung 14 (1961), 2, 143-172.
DOI 10.1524/stuf.1961.14.14.143 |
MR 0151376
[2] Dömösi, P., Kudlek, M.:
Strong iteration lemmata for regular, linear, context-free, and linear indexed languages. In: Fund. Comput. Theory 1999, pp. 226-233.
DOI 10.1007/3-540-48321-7_18 |
MR 1850234
[3] Ogden, W., Ross, R. J., Winklmann, K.:
An “Interchange Lemma” for context-free languages. SIAM J. Comput. 14 (1982), 2, 410-415.
DOI 10.1137/0214031 |
MR 0784746
[4] Shallit, J.:
A Second Course in Formal Languages and Automata Theory. Cambridge University Press, New York 2008.
DOI 10.1017/cbo9780511808876