Previous |  Up |  Next

Article

Keywords:
eigenvalues; impulses; controllability
Summary:
This article considers a class of finite-dimensional linear impulsive time-varying systems for which various sufficient and necessary algebraic criteria for complete controllability, including matrix rank conditions are established. The obtained controllability results are further synthesised for the time-invariant case, and under some special conditions on the system parameters, we obtain a Popov-Belevitch-Hautus (PBH)-type rank condition which employs eigenvalues of the system matrix for the investigation of their controllability. Numerical examples are provided that demonstrate--for the linear impulsive systems, null controllability need not imply their complete controllability, unlike for the non-impulsive linear systems.
References:
[1] Benzaid, Z., Sznaier, M.: Constrained controllability of linear impulse differential systems. IEEE Trans. Automat. Contr. 39(5) (1994), 1064-1066. DOI  | MR 1274362
[2] George, R. K., Nandakumaran, A. K., Arapostathis, A.: A note on controllability of impulsive systems. J. Math. Anal. Appl. 241(2) (2000), 276-283. DOI  | MR 1739206
[3] Guan, Z. H., Qian, T. H., Yu, X.: Controllability and observability of linear time-varying impulsive systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(8) (2002), 1198-1208. DOI  | MR 1929297
[4] Guan, Z. H., Qian, T. H., Yu, X.: On controllability and observability for a class of impulsive systems. Systems Control Lett. 47(3) (2002), 247-257. DOI  | MR 2008278
[5] Han, J., Liu, Y., Zhao, S., Yang, R.: A note on the controllability and observability for piecewise linear time-varying impulsive systems. Asian J. Control 15(6) (2013), 1867-1870. DOI  | MR 3130263
[6] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of impulsive differential equations. World Scientific, Singapore 1989. MR 1082551
[7] Leela, S., McRae, F. A., Sivasundaram, S.: Controllability of impulsive differential equations. J. Math. Anal. Appl. 177(1) (1993), 24-30. DOI  | MR 1224802
[8] Muni, V. S., George, R. K.: Controllability of semilinear impulsive control systems with multiple time delays in control. IMA J. Math. Control \& Inform. 36(3) (2019), 869-899. DOI  | MR 4009506
[9] Terrell, W. J.: Stability and stabilization: An introduction. Princeton University Press, Princeton, USA 2009. MR 2482799
[10] Xie, G., Wang, L.: Controllability and observability of a class of linear impulsive systems. J. Math. Anal. Appl. 304(1) (2005), 336-355. DOI  | MR 2124666
[11] Zhao, S., Sun, J.: Controllability and observability for a class of time-varying impulsive systems. Nonlinear Anal. RWA. 10(3) (2009), 1370-1380. DOI  | MR 2502952
[12] Zhao, S., Sun, J.: Controllability and observability for impulsive systems in complex fields. Nonlinear Anal. RWA. 11(3) (2010), 1513-1521. DOI  | MR 2646565
Partner of
EuDML logo