[1] Benzaid, Z., Sznaier, M.:
Constrained controllability of linear impulse differential systems. IEEE Trans. Automat. Contr. 39(5) (1994), 1064-1066.
DOI |
MR 1274362
[2] George, R. K., Nandakumaran, A. K., Arapostathis, A.:
A note on controllability of impulsive systems. J. Math. Anal. Appl. 241(2) (2000), 276-283.
DOI |
MR 1739206
[3] Guan, Z. H., Qian, T. H., Yu, X.:
Controllability and observability of linear time-varying impulsive systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(8) (2002), 1198-1208.
DOI |
MR 1929297
[4] Guan, Z. H., Qian, T. H., Yu, X.:
On controllability and observability for a class of impulsive systems. Systems Control Lett. 47(3) (2002), 247-257.
DOI |
MR 2008278
[5] Han, J., Liu, Y., Zhao, S., Yang, R.:
A note on the controllability and observability for piecewise linear time-varying impulsive systems. Asian J. Control 15(6) (2013), 1867-1870.
DOI |
MR 3130263
[6] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.:
Theory of impulsive differential equations. World Scientific, Singapore 1989.
MR 1082551
[7] Leela, S., McRae, F. A., Sivasundaram, S.:
Controllability of impulsive differential equations. J. Math. Anal. Appl. 177(1) (1993), 24-30.
DOI |
MR 1224802
[8] Muni, V. S., George, R. K.:
Controllability of semilinear impulsive control systems with multiple time delays in control. IMA J. Math. Control \& Inform. 36(3) (2019), 869-899.
DOI |
MR 4009506
[9] Terrell, W. J.:
Stability and stabilization: An introduction. Princeton University Press, Princeton, USA 2009.
MR 2482799
[10] Xie, G., Wang, L.:
Controllability and observability of a class of linear impulsive systems. J. Math. Anal. Appl. 304(1) (2005), 336-355.
DOI |
MR 2124666
[11] Zhao, S., Sun, J.:
Controllability and observability for a class of time-varying impulsive systems. Nonlinear Anal. RWA. 10(3) (2009), 1370-1380.
DOI |
MR 2502952
[12] Zhao, S., Sun, J.:
Controllability and observability for impulsive systems in complex fields. Nonlinear Anal. RWA. 11(3) (2010), 1513-1521.
DOI |
MR 2646565