Previous |  Up |  Next

Article

Title: Exponential stability via aperiodically intermittent control of complex-variable time delayed chaotic systems (English)
Author: Zheng, Song
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 4
Year: 2020
Pages: 753-766
Summary lang: English
.
Category: math
.
Summary: This paper focuses on the problem of exponential stability analysis of uncertain complex-variable time delayed chaotic systems, where the parameters perturbation are bounded assumed. The aperiodically intermittent control strategy is proposed to stabilize the complex-variable delayed systems. By taking the advantage of Lyapunov method in complex field and utilizing inequality technology, some sufficient conditions are derived to ensure the stability of uncertain complex-variable delayed systems, where the constrained time delay are considered in the conditions obtained. To protrude the availability of the devised stability scheme, simulation examples are ultimately demonstrated. (English)
Keyword: complex-variable system
Keyword: delayed
Keyword: uncertain
Keyword: stability
Keyword: aperiodically intermittent control
MSC: 34C15
MSC: 34D06
MSC: 34D35
idZBL: Zbl 07286045
idMR: MR4168534
DOI: 10.14736/kyb-2020-4-0753
.
Date available: 2020-10-30T16:28:58Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148382
.
Reference: [1] Cai, S., Zhou, P., Liu, Z.: Pinning synchronization of hybrid-coupled directed delayed dynamical network via intermittent control..Chaos 24 (2014), 033102. MR 3404400, 10.1063/1.4886186
Reference: [2] Carr, T. W., Schwartz, I. B.: Controlling the unstable steady state in a multimode laser..Phys. Rev. E 51 (1995), 5109-5111. 10.1103/physreve.51.5109
Reference: [3] Chen, T., Liu, X., Lu, W.: Pinning complex networks by a single controller..IEEE Trans. Circuits Systems I 54 (2007), 1317-1326. MR 2370589, 10.1109/tcsi.2007.895383
Reference: [4] Dong, Y., Liang, S., Guo, L., Wang, W.: Exponential stability and stabilization for uncertain discrete-time periodic systems with time-varying delay..IMA J. Math. Control Inform. 35 (2018), 3, 963-986. MR 3858299, 10.1093/imamci/dnx003
Reference: [5] Fang, T., Sun, J.: Stability of complex-valued impulsive system with delay..Appl. Math. Comput. 240 (2014), 102-108. MR 3213676, 10.1016/j.amc.2014.04.062
Reference: [6] Fang, T., Sun, J.: Stability of complex-valued impulsive and switching system and application to the Lü system..Nonlinear Analysis: Hybrid Systems 14 (2015), 38-46. MR 3228049, 10.1016/j.nahs.2014.04.004
Reference: [7] Fowler, A. C., Gibbon, J. D., McGuinness, M. J.: The complex Lorenz equations..Physica D 4 (1982), 139-163. Zbl 1194.37039, MR 0653770, 10.1016/0167-2789(82)90057-4
Reference: [8] Huang, T., Li, C., Liu, X.: Synchronization of chaotic systems with delay using intermittent linear state feedback..Chaos 18 (2008), 033122. MR 2464303, 10.1063/1.2967848
Reference: [9] Jiang, C., Zhang, F., Li, T.: Synchronization and antisynchronization of N-coupled fractional-order complex chaotic systems with ring connection..Math. Methods Appl. Sci. 41 (2018), 2625-2638. MR 3790715, 10.1002/mma.4765
Reference: [10] Li, C. D., Liao, X. F., Huang, T. W.: Exponential stabilization of chaotic systems with delay by periodically intermittent control..Chaos 17 (2007), 013103. MR 2319024, 10.1063/1.2430394
Reference: [11] Li, N., Sun, H., Zhang, Q.: Exponential synchronization of united complex dynamical networks with multi-links via adaptive periodically intermittent control..IET Control Theory Appl. 159 (2013), 1725-1736. MR 3115117, 10.1049/iet-cta.2013.0159
Reference: [12] Liang, Y., Wang, X.: Synchronization in complex networks with non-delay and delay couplings via intermittent control with two switched periods..Physica A 395 (2014), 434-444. MR 3133676, 10.1016/j.physa.2013.10.002
Reference: [13] Liu, X., Chen, T.: Synchronization of complex networks via aperiodically intermittent pinning control..IEEE Trans. Automat. Control 60 (2015), 3316-3321. MR 3432701, 10.1109/tac.2015.2416912
Reference: [14] Liu, X., Liu, Y., Zhou, L.: Quasi-synchronization of nonlinear coupled chaotic systems via aperiodically intermittent pinning control..Neurocomputing 173 (2016), 759-767. 10.1016/j.neucom.2015.08.027
Reference: [15] Liu, L., Wang, Z., Huang, Z., Zhang, H.: Adaptive predefined performance control for IMO systems with unknown direction via generalized fuzzy hyperbolic model..IEEE Trans. Fuzzy Systems 25 (2007), 527-542. 10.1109/tfuzz.2016.2566803
Reference: [16] Mahmoud, G. M., Bountis, T., Mahmoud, E. E.: Active control and global synchronization for complex Chen and Lü systems..Int. J. Bifurcat. Chaos 17 (2014), 4295-4308. MR 2394229, 10.1142/s0218127407019962
Reference: [17] Mahmoud, G., Mahmoud, E., Arafa, A.: On modified time delay hyperchaotic complex Lü system..Nonlinear Dynamics 80 (2015), 855-869. MR 3324303, 10.1007/s11071-015-1912-9
Reference: [18] Mahmoud, G., Mahmoud, E., Arafa, A.: Projective synchronization for coupled partially linear complex-variable systems with known parameters..Math. Methods Appl. Sci. 40 (2017), 1214-1222. MR 3610726, 10.1002/mma.4045
Reference: [19] Ning, C. Z., Haken, H.: Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations..Phys. Rev. A 41 (1990), 3826-3837. 10.1103/physreva.41.3826
Reference: [20] Ott, E., Grebogi, C., Yorke, J.: Controlling chaos..Phys. Rev. Lett. 64 (1990), 1196. Zbl 0964.37502, MR 1041523, 10.1103/physrevlett.64.1196
Reference: [21] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems..Phys. Rev. Lett. 64 (1990), 821-824. Zbl 1098.37553, MR 1038263, 10.1103/physrevlett.64.821
Reference: [22] Qiu, J., Cheng, L., X, Chen, Lu, J., He, H.: Semi-periodically intermittent control for synchronization of switched complex networks: a mode-dependent average dwell time approach..Nonlinear Dynamics 83 (2016), 1757-1771. MR 3449506, 10.1007/s11071-015-2445-y
Reference: [23] Starrett, J.: Control of chaos by occasional bang-bang..Phys. Rev. E 67 (2003), 036203. 10.1103/physreve.67.036203
Reference: [24] Xia, W., Cao, J.: Pinning synchronization of delayed dynamical networks via periodically intermittent control..Chaos 19 (2009), 013120. MR 2513764, 10.1063/1.3071933
Reference: [25] Zheng, S.: Parameter identification and adaptive impulsive synchronization of uncertain complex-variable chaotic systems..Nonlinear Dynamics 74 (2013), 957-967. Zbl 1306.34069, MR 3127104, 10.1007/s11071-013-1015-4
Reference: [26] Zheng, S.: Impulsive complex projective synchronization in drive-response complex coupled dynamical networks..Nonlinear Dynamics 79 (2015), 147-161. MR 3302683, 10.1007/s11071-014-1652-2
Reference: [27] Zheng, S.: Stability of uncertain impulsive complex-variable chaotic systems with time- varying delays..ISA Trans. 58 (2015), 20-26. 10.1016/j.isatra.2015.05.016
Reference: [28] Zheng, S.: Further Results on the impulsive synchronization of uncertain complex-variable chaotic delayed systems..Complexity 21 (2016), 131-142. MR 3508409, 10.1002/cplx.21641
Reference: [29] Zheng, S.: Synchronization analysis of time delay complex-variable chaotic systems with discontinuous coupling..J. Franklin Inst. 353 (2016), 1460-1477. MR 3472559, 10.1016/j.jfranklin.2016.02.006
Reference: [30] Zheng, S.: Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods..Kybernetika 54 (2018), 937-957. MR 3893129, 10.14736/kyb-2018-5-0937
Reference: [31] Zheng, S., Bi, Q., Cai, G.: Adaptive projective synchronization in complex networks with time-varying coupling delay..Phys. Lett. A 373 (2009), 1553-1559. MR 2513416, 10.1016/j.physleta.2009.03.001
Reference: [32] Zochowski, M.: Intermittent dynamical control..Physica D 145 (2000), 181-190. 10.1016/s0167-2789(00)00112-3
.

Files

Files Size Format View
Kybernetika_56-2020-4_8.pdf 1.061Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo