Previous |  Up |  Next

Article

Title: Controllability of linear impulsive systems – an eigenvalue approach (English)
Author: S. Muni, Vijayakumar
Author: K. George, Raju
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 4
Year: 2020
Pages: 727-752
Summary lang: English
.
Category: math
.
Summary: This article considers a class of finite-dimensional linear impulsive time-varying systems for which various sufficient and necessary algebraic criteria for complete controllability, including matrix rank conditions are established. The obtained controllability results are further synthesised for the time-invariant case, and under some special conditions on the system parameters, we obtain a Popov-Belevitch-Hautus (PBH)-type rank condition which employs eigenvalues of the system matrix for the investigation of their controllability. Numerical examples are provided that demonstrate--for the linear impulsive systems, null controllability need not imply their complete controllability, unlike for the non-impulsive linear systems. (English)
Keyword: eigenvalues
Keyword: impulses
Keyword: controllability
MSC: 15A18
MSC: 34A37
MSC: 93B05
idZBL: Zbl 07286044
idMR: MR4168533
DOI: 10.14736/kyb-2020-4-0727
.
Date available: 2020-10-30T16:27:38Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148381
.
Reference: [1] Benzaid, Z., Sznaier, M.: Constrained controllability of linear impulse differential systems..IEEE Trans. Automat. Contr. 39(5) (1994), 1064-1066. MR 1274362,
Reference: [2] George, R. K., Nandakumaran, A. K., Arapostathis, A.: A note on controllability of impulsive systems..J. Math. Anal. Appl. 241(2) (2000), 276-283. MR 1739206,
Reference: [3] Guan, Z. H., Qian, T. H., Yu, X.: Controllability and observability of linear time-varying impulsive systems..IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(8) (2002), 1198-1208. MR 1929297,
Reference: [4] Guan, Z. H., Qian, T. H., Yu, X.: On controllability and observability for a class of impulsive systems..Systems Control Lett. 47(3) (2002), 247-257. MR 2008278,
Reference: [5] Han, J., Liu, Y., Zhao, S., Yang, R.: A note on the controllability and observability for piecewise linear time-varying impulsive systems..Asian J. Control 15(6) (2013), 1867-1870. MR 3130263,
Reference: [6] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of impulsive differential equations..World Scientific, Singapore 1989. MR 1082551
Reference: [7] Leela, S., McRae, F. A., Sivasundaram, S.: Controllability of impulsive differential equations..J. Math. Anal. Appl. 177(1) (1993), 24-30. MR 1224802,
Reference: [8] Muni, V. S., George, R. K.: Controllability of semilinear impulsive control systems with multiple time delays in control..IMA J. Math. Control \& Inform. 36(3) (2019), 869-899. MR 4009506,
Reference: [9] Terrell, W. J.: Stability and stabilization: An introduction..Princeton University Press, Princeton, USA 2009. MR 2482799
Reference: [10] Xie, G., Wang, L.: Controllability and observability of a class of linear impulsive systems..J. Math. Anal. Appl. 304(1) (2005), 336-355. MR 2124666,
Reference: [11] Zhao, S., Sun, J.: Controllability and observability for a class of time-varying impulsive systems..Nonlinear Anal. RWA. 10(3) (2009), 1370-1380. MR 2502952,
Reference: [12] Zhao, S., Sun, J.: Controllability and observability for impulsive systems in complex fields..Nonlinear Anal. RWA. 11(3) (2010), 1513-1521. MR 2646565,
.

Files

Files Size Format View
Kybernetika_56-2020-4_7.pdf 648.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo