[3] Chen, C., Ding, Z., Lennox, B.:
Rejection of nonharmonic disturbances innonlinear systems with semi-global stability. IEEE Trans. Circuits Systems, II: Express Briefs 55 (2008), 1289-1293.
DOI 10.1109/tcsii.2008.2009962
[5] Ding, Z.:
Semi-global stabilization of a class of non-minimum phase nonlinear output feedback systems. IEE Proc. Control Theory Appl. 152 (2005), 4, 460-464.
DOI 10.1049/ip-cta:20041246
[8] Ding, Z.:
Decentralized output regulation of large scale nonlinear systems with delay. Kybernetika 45 (2009), 33-48.
MR 2489579 |
Zbl 1158.93303
[9] Huang, X., Khalil, H. K., Song, Y.:
Regulation of non-minimum-phase nonlinear systems using slow integrators and high-gain feedback. IEEE Trans. Automat. Control 64 (2019), 2, 640-653.
DOI 10.1109/tac.2018.2839532 |
MR 3912114
[11] Isidori, A.:
Global almost disturbance decoupling with stability for non-minimum phase single-input single-output nonlinear systems. Systems Control Lett. 28 (1996), 2, 115-122.
DOI 10.1016/0167-6911(96)00021-7 |
MR 1404254
[12] Isidori, A.:
A tool for semiglobal stabilization of uncertain non-minimum phase nonlinear systems via output feedback. IEEE Trans. Automat. Control 45 (2000), 10, 1817-1827.
DOI 10.1109/tac.2000.880972 |
MR 1795350
[15] Isidori, A., Marconi, L., Serrani, A.:
New results on semiglobal output regulation of non-minimum phase nonlinear systems. In: Proc. 41st IEEE Conference on Decision and Control, Las Vegas 2002, pp. 1467-1472.
DOI 10.1109/cdc.2002.1184726 |
MR 1760699
[16] Isidori, A., Marconi, L., Serrani, A.:
Observability conditions for the semiglobal output regulation of non-minimum phase nonlinear systems. In: Proc. 42nd IEEE Conference on Decision and Control, Maui 2003, pp. 55-60.
DOI 10.1109/cdc.2003.1272535 |
MR 2106753
[17] Jiang, Y.:
Rejection of nonharmonic disturbances in the nonlinear system via the internal model approach. J. Vibration Control 13 (2011), 6, 1916-1921.
DOI 10.1177/1077546311429051 |
MR 3179079
[18] Jiang, Y., Dai, J. Y.:
Adaptive output regulation of a class of nonlinear output feedback systems with unknown high frequency gain. IEEE/CAA J. Autom. Sinica 7 (2020), 2, 568-574.
DOI 10.1109/jas.2020.1003060 |
MR 4086660
[19] Jiang, Y., Liu, S.:
Rejection of nonharmonic disturbances in a class of nonlinear systems with nonlinear exosystems. Asian J. Control 18(2011), 12, 858-867.
DOI 10.1002/asjc.193 |
MR 2869889
[20] Jiang, Y., Liu, S. T., Wang, R. L.:
Rejection of nonharmonic disturbances for a class of uncertain nonlinear systems with nonlinear exosystems. Science China (Inform. Sci.) 56(2013), 3, 1-12.
DOI 10.1007/s11432-011-4481-7 |
MR 3028023
[21] Karagiannisa, D., Jiang, Z., Ortegac, R., al, et:
Output-feedback stabilization of a class of uncertain non-minimum phase nonlinear systems. Automatica 41 (2005), 9, 1609-1615.
DOI 10.1016/j.automatica.2005.04.013 |
MR 2161124
[23] Marino, R., Tomei, P.:
Global adaptive output feedback control of nonlinear systems, part i: Linear parameterization. IEEE Trans. Automat. Control 38 (1993), 17-32.
DOI 10.1109/9.186309 |
MR 1201492
[24] Nazrulla, S., Khalil, H. K.:
Output regulation of non-minimum phase nonlinear systems using an extended high-gain observer. In: IEEE International Conference on Control Automation, IEEE, 2010.
DOI 10.1109/icca.2009.5410197 |
MR 2814930
[25] Nazrulla, S., Khalil, H. K.:
Robust stabilization of non-minimum phase nonlinear systems using extended high-gain observers. IEEE Trans. Automat. Control 56 (2011), 4, 802-813.
DOI 10.1109/tac.2010.2069612 |
MR 2814930
[26] Ramos, L. E., Čelikovský, S., Kučera, V.:
Generalized output regulation problem for a class of nonlinear systems with nonautonomous exosystem. IEEE Trans. Automat. Control 49 (2004), 1737-1742.
DOI 10.1109/tac.2004.835404 |
MR 2091325
[27] Rehák, B., Čelikovský, S., Ruiz-León, J., Orozco-Mora, J.:
A comparison of two fem-based methods for the solution of the nonlinear output regulation problem. Kybernetika 45 (2009), 427-444.
MR 2543132