Previous |  Up |  Next

Article

Title: Global robust output regulation of a class of nonlinear systems with nonlinear exosystems (English)
Author: Jiang, Yuan
Author: Lu, Ke
Author: Dai, Jiyang
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 4
Year: 2020
Pages: 794-809
Summary lang: English
.
Category: math
.
Summary: An adaptive output regulation design method is proposed for a class of output feedback systems with nonlinear exosystem and unknown parameters. A new nonlinear internal model approach is developed in the present study that successfully converts the global robust output regulation problem into a robust adaptive stabilization problem for the augmented system. Moreover, an output feedback controller is achieved based on a type of state filter which is designed for the transformed augmented system. The adaptive control technique is successfully introduced to the stabilization design to ensure the global stability of the closed-loop system. The result can successfully apply to a tracking control problem associated with the well known Van der Pol oscillator. (English)
Keyword: output regulation
Keyword: global stability
Keyword: internal model
Keyword: nonlinear systems
MSC: 62A10
MSC: 62F15
MSC: 93E12
idZBL: Zbl 07286047
idMR: MR4168536
DOI: 10.14736/kyb-2020-4-0794
.
Date available: 2020-10-30T16:32:31Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148384
.
Reference: [1] Bodson, M., Douglas, S. C.: Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequencies..Automatica 33 (1997), 2213-2221. MR 1604113, 10.1016/s0005-1098(97)00149-0
Reference: [2] Byrnes, C. I., Isidori, A.: Nonlinear internal model for output regulation..IEEE Trans. Automat. Control 49 (2004), 2244-2247. MR 2106753, 10.1109/tac.2004.838492
Reference: [3] Chen, C., Ding, Z., Lennox, B.: Rejection of nonharmonic disturbances innonlinear systems with semi-global stability..IEEE Trans. Circuits Systems, II: Express Briefs 55 (2008), 1289-1293. 10.1109/tcsii.2008.2009962
Reference: [4] Chen, Z., Huang, J.: Robust output regulation with nonlinear exosystems..Automatica 41 (2005), 1447-1454. Zbl 1086.93013, MR 2160490, 10.1016/j.automatica.2005.03.015
Reference: [5] Ding, Z.: Semi-global stabilization of a class of non-minimum phase nonlinear output feedback systems..IEE Proc. Control Theory Appl. 152 (2005), 4, 460-464. 10.1049/ip-cta:20041246
Reference: [6] Ding, Z.: Output regulation of uncertain nonlinear systems with nonlinear exosystems..IEEE Trans. Automat. Control 51 (2006), 498-503. MR 2205690, 10.1109/tac.2005.864199
Reference: [7] Ding, Z.: Asymptotic rejection of unknown sinusoidal disturbances in nonlinear systems..Automatica 43 (2007), 174-177. MR 2266785, 10.1016/j.automatica.2006.08.006
Reference: [8] Ding, Z.: Decentralized output regulation of large scale nonlinear systems with delay..Kybernetika 45 (2009), 33-48. Zbl 1158.93303, MR 2489579
Reference: [9] Huang, X., Khalil, H. K., Song, Y.: Regulation of non-minimum-phase nonlinear systems using slow integrators and high-gain feedback..IEEE Trans. Automat. Control 64 (2019), 2, 640-653. MR 3912114, 10.1109/tac.2018.2839532
Reference: [10] Huang, J., Rugh, W. J.: On a nonlinear multivariable servomenchanism problem..Automatica 26 (1990), 963-972. MR 1080983, 10.1016/0005-1098(90)90081-r
Reference: [11] Isidori, A.: Global almost disturbance decoupling with stability for non-minimum phase single-input single-output nonlinear systems..Systems Control Lett. 28 (1996), 2, 115-122. MR 1404254, 10.1016/0167-6911(96)00021-7
Reference: [12] Isidori, A.: A tool for semiglobal stabilization of uncertain non-minimum phase nonlinear systems via output feedback..IEEE Trans. Automat. Control 45 (2000), 10, 1817-1827. MR 1795350, 10.1109/tac.2000.880972
Reference: [13] Isidori, A.: Nonlinear Control Systems..Springer-Verlag, Berlin 2013. Zbl 0931.93005, MR 0895138, 10.1007/978-3-662-02581-9
Reference: [14] Isidori, A., Byrnes, C. I.: Output regulation of nonlinear systems..IEEE Trans. Automat. Control 35 (1990), 131-140. Zbl 0989.93041, MR 1038409, 10.1109/9.45168
Reference: [15] Isidori, A., Marconi, L., Serrani, A.: New results on semiglobal output regulation of non-minimum phase nonlinear systems..In: Proc. 41st IEEE Conference on Decision and Control, Las Vegas 2002, pp. 1467-1472. MR 1760699, 10.1109/cdc.2002.1184726
Reference: [16] Isidori, A., Marconi, L., Serrani, A.: Observability conditions for the semiglobal output regulation of non-minimum phase nonlinear systems..In: Proc. 42nd IEEE Conference on Decision and Control, Maui 2003, pp. 55-60. MR 2106753, 10.1109/cdc.2003.1272535
Reference: [17] Jiang, Y.: Rejection of nonharmonic disturbances in the nonlinear system via the internal model approach..J. Vibration Control 13 (2011), 6, 1916-1921. MR 3179079, 10.1177/1077546311429051
Reference: [18] Jiang, Y., Dai, J. Y.: Adaptive output regulation of a class of nonlinear output feedback systems with unknown high frequency gain..IEEE/CAA J. Autom. Sinica 7 (2020), 2, 568-574. MR 4086660, 10.1109/jas.2020.1003060
Reference: [19] Jiang, Y., Liu, S.: Rejection of nonharmonic disturbances in a class of nonlinear systems with nonlinear exosystems..Asian J. Control 18(2011), 12, 858-867. MR 2869889, 10.1002/asjc.193
Reference: [20] Jiang, Y., Liu, S. T., Wang, R. L.: Rejection of nonharmonic disturbances for a class of uncertain nonlinear systems with nonlinear exosystems..Science China (Inform. Sci.) 56(2013), 3, 1-12. MR 3028023, 10.1007/s11432-011-4481-7
Reference: [21] Karagiannisa, D., Jiang, Z., Ortegac, R., al, et: Output-feedback stabilization of a class of uncertain non-minimum phase nonlinear systems..Automatica 41 (2005), 9, 1609-1615. MR 2161124, 10.1016/j.automatica.2005.04.013
Reference: [22] Marco, S. D., Marconi, L., Mahony, R., Hamel, T.: Output regulation for systems on matrix lie-groups..Automatica 87 (2018), 8-16. MR 3733895, 10.1016/j.automatica.2017.08.006
Reference: [23] Marino, R., Tomei, P.: Global adaptive output feedback control of nonlinear systems, part i: Linear parameterization..IEEE Trans. Automat. Control 38 (1993), 17-32. MR 1201492, 10.1109/9.186309
Reference: [24] Nazrulla, S., Khalil, H. K.: Output regulation of non-minimum phase nonlinear systems using an extended high-gain observer..In: IEEE International Conference on Control Automation, IEEE, 2010. MR 2814930, 10.1109/icca.2009.5410197
Reference: [25] Nazrulla, S., Khalil, H. K.: Robust stabilization of non-minimum phase nonlinear systems using extended high-gain observers..IEEE Trans. Automat. Control 56 (2011), 4, 802-813. MR 2814930, 10.1109/tac.2010.2069612
Reference: [26] Ramos, L. E., Čelikovský, S., Kučera, V.: Generalized output regulation problem for a class of nonlinear systems with nonautonomous exosystem..IEEE Trans. Automat. Control 49 (2004), 1737-1742. MR 2091325, 10.1109/tac.2004.835404
Reference: [27] Rehák, B., Čelikovský, S., Ruiz-León, J., Orozco-Mora, J.: A comparison of two fem-based methods for the solution of the nonlinear output regulation problem..Kybernetika 45 (2009), 427-444. MR 2543132
Reference: [28] Tornambe, A.: Output feedback stabilization of a class of non-minimum phase nonlinear systems..Systems Control Lett. 19(1992), 3, 193-204. MR 1180507, 10.1016/0167-6911(92)90113-7
Reference: [29] Trinh, N. T., Andrieu, V., Xu, C. Z.: Output regulation for a cascaded network of 2$\times$2 hyperbolic systems with PI controller..Automatica 91 (2018), 270-278. MR 3777612, 10.1016/j.automatica.2018.01.010
Reference: [30] Wang, L., Isidori, A., Liu, Z. T., Su, H. Y.: Robust output regulation for invertible nonlinear MIMO systems..Automatica 82 (2017), 278-286. MR 3658766, 10.1016/j.automatica.2017.04.049
Reference: [31] Xi, Z., Ding, Z.: Global adaptive output regulation of a class of nonlinear systems with nonlinear exosystems..Automatica 43 (2007), 143-149. MR 2266780, 10.1016/j.automatica.2006.08.011
Reference: [32] Xu, D., Wang, X., Chen, Z.: Output regulation of nonlinear output feedback systems with exponential parameter convergence..Systems Control Lett. 88 (2016), 81-90. MR 3453455, 10.1016/j.sysconle.2015.12.004
Reference: [33] Zattoni, E., Perdon., A. M., Conte, G.: Output regulation by error dynamic feedback in hybrid systems with periodic state jumps..Automatica 50 (2017), 1, 322-334. MR 3654616, 10.1016/j.automatica.2017.03.037
.

Files

Files Size Format View
Kybernetika_56-2020-4_10.pdf 480.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo