Previous |  Up |  Next

Article

Title: An improvement of the non-existence region for limit cycles of the Bogdanov-Takens system (English)
Author: Hayashi, Makoto
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 4
Year: 2020
Pages: 199-206
Summary lang: English
.
Category: math
.
Summary: In this paper, an improvement of the global region for the non-existence of limit cycles of the Bogdanov-Takens system, which is well-known in the Bifurcation Theory, is given by two ideas. The first is to apply the existence of the algebraic invariant curve of the system to the Bendixson-Dulac criterion, and the second is to consider a necessary condition in order that a closed orbit of the system includes two equilibrium points. In virtue of these methods, it shall be shown that our previous result and the result of Gasull et al. are improved partially. (English)
Keyword: Liénard system
Keyword: Bogdanov-Takens system
Keyword: limit cycle
Keyword: Bendixson-Dulac criterion
Keyword: algebraic invariant curve
MSC: 34C07
MSC: 34C25
MSC: 34C26
MSC: 34D20
idZBL: Zbl 07285960
idMR: MR4173074
DOI: 10.5817/AM2020-4-199
.
Date available: 2020-10-30T16:37:23Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148387
.
Reference: [1] Gasull, A., Giacomini, H., Pérez-González, S., Torregrosa, J.: A proof of Perko’s conjectures for the Bogdanov-Takens system.J. Differential Equations 255 (2013), 2655–2671. MR 3090073, 10.1016/j.jde.2013.07.006
Reference: [2] Gasull, A., Giacomini, H., Torregrosa, J.: Some results on homoclinic and heteroclinic connections in planar systems.Nonlinearity 23 (2010), 2977–3001. MR 2734501, 10.1088/0951-7715/23/12/001
Reference: [3] Gasull, A., Guillamon, A.: Non-existence of limit cycles for some predator–prey systems.Proceedings of Equadiff'91, World Scientific, Singapore, 1993, pp. 538–546. MR 1242294
Reference: [4] Hayashi, M.: On the Non-existence of the closed Orbit for a Liénard system.Southeast Asian Bull. Math. 24 (2000), 225–229. MR 1810059, 10.1007/s10012-000-0225-0
Reference: [5] Hayashi, M.: A global condition for the non-existence of limit cycles of Bogdanov-Takens system.Far East J. Math. Sci. 14 (1) (2004), 127–136. MR 2096965
Reference: [6] Hayashi, M., Villari, G., Zanolin, F.: On the uniqueness of limit cycle for certain Liénard systems without symmetry.Electron. J. Qual. Theory Differ. Equ. 55 (2018), 1–10. MR 3827993, 10.14232/ejqtde.2018.1.55
Reference: [7] Kuznetsov, Y.: Elements of Applied Bifurcation Theory.second ed., Springer-Verlag, New York, 1998. Zbl 0914.58025, MR 1711790
Reference: [8] Li, Cheng-zhi, Rousseau, C., Wang, X.: A simple proof for the unicity of the limit cycle in the Bogdanov-Takens system.Canad. Math. Bull. 33 (1) (1990), 84–92. MR 1036862, 10.4153/CMB-1990-015-3
Reference: [9] Matsumoto, T., Komuro, M., Kokubu, H., Tokunaga, R.: Bifurcations (Sights, Sounds and Mathematics).Springer-Verlag, New York, 1993.
Reference: [10] Perko, L.M.: A global analysis of the Bogdanov-Takens system.SIAM J. Appl. Math. 52 (1992), 1172–1192. MR 1174053, 10.1137/0152069
Reference: [11] Perko, L.M.: Differential Equations and Dynamical Systems.Texts Appl. Math., vol. 7, Springer-Verlag, New York, 3rd ed., 2001. MR 1801796, 10.1007/978-1-4613-0003-8
Reference: [12] Roussarie, R., Wagener, F.: A study of the Bogdanov-Takens bifurcation.Resenhas 2 (1995), 1–25. MR 1358328
Reference: [13] Teschl, G.: Ordinary Differential Equations and Dynamical systems.Graduate Studies in Mathematics, vol. 140, AMS, Providence, 2012. MR 2961944, 10.1090/gsm/140/06
Reference: [14] Zhi-fen, Z., Tong-ren, D., Wen-zao, H., Zhen-xi, D.: Qualitative Theory of Differential Equations.Translations of Mathematical Monographs, vol. 102, AMS, Providence, 1992. MR 1175631
.

Files

Files Size Format View
ArchMathRetro_056-2020-4_1.pdf 481.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo