Previous |  Up |  Next

Article

Title: Fractional ${q}$-difference equations on the half line (English)
Author: Abbas, Saïd
Author: Benchohra, Mouffak
Author: Laledj, Nadjet
Author: Zhou, Yong
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 4
Year: 2020
Pages: 207-223
Summary lang: English
.
Category: math
.
Summary: This article deals with some results about the existence of solutions and bounded solutions and the attractivity for a class of fractional ${q}$-difference equations. Some applications are made of Schauder fixed point theorem in Banach spaces and Darbo fixed point theorem in Fréchet spaces. We use some technics associated with the concept of measure of noncompactness and the diagonalization process. Some illustrative examples are given in the last section. (English)
Keyword: fractional $q$-difference equation
Keyword: attractivity
Keyword: diagonalization
Keyword: bounded solution
Keyword: Banach space
Keyword: Fréchet space
Keyword: fixed point
MSC: 26A33
idZBL: Zbl 07285961
idMR: MR4173075
DOI: 10.5817/AM2020-4-207
.
Date available: 2020-10-30T16:39:51Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148389
.
Reference: [1] Abbas, S., Benchohra, M.: On the existence and local asymptotic stability of solutions of fractional order integral equations.Comment. Math. 52 (1) (2012), 91–100. MR 2977716
Reference: [2] Abbas, S., Benchohra, M.: Existence and attractivity for fractional order integral equations in Fréchet spaces.Discuss. Math. Differ. Incl. Control Optim. 33 (1) (2013), 1–17. MR 3136582, 10.7151/dmdico.1141
Reference: [3] Abbas, S., Benchohra, M., Diagana, T.: Existence and attractivity results for some fractional order partial integro-differential equations with delay.Afr. Diaspora J. Math. 15 (2) (2013), 87–100. MR 3161669
Reference: [4] Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability.De Gruyter, Berlin, 2018. MR 3791511
Reference: [5] Abbas, S., Benchohra, M., Henderson, J.: Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras.Nonlinear Stud. 20 (1) (2013), 1–10. MR 3058403
Reference: [6] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations.Springer, New York, 2012. MR 2962045
Reference: [7] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Advanced Fractional Differential and Integral Equations.Nova Science Publishers, New York, 2015. Zbl 1314.34002, MR 3309582
Reference: [8] Adams, C.R.: In the linear ordinary $q$-difference equation.Annals Math. 30 (1928), 195–205. MR 1502876, 10.2307/1968274
Reference: [9] Agarwal, R.: Certain fractional $q$- integrals and $q$-derivatives.Proc. Cambridge Philos. Soc. 66 (1969), 365–370. MR 0247389
Reference: [10] Ahmad, B.: Boundary value problem for nonlinear third order $q$-difference equations.Electron. J. Differential Equations 2011 (94) (2011), 1–7. MR 2832270
Reference: [11] Ahmad, B., Ntouyas, S.K., Purnaras, L.K.: Existence results for nonlocal boundary value problems of nonlinear fractional $q$-difference equations.Adv. Difference Equ. 2012 (2012), 14 pp. MR 3016054
Reference: [12] Almezel, S., Ansari, Q.H., Khamsi, M.A.: Topics in Fixed Point Theory.Springer-Verlag, New York, 2014. MR 3411798
Reference: [13] Benchohra, M., Berhoun, F., N’Guérékata, G.M.: Bounded solutions for fractional order differential equations on the half-line.Bull. Math. Anal. Appl. 146 (4) (2012), 62–71. MR 2955875
Reference: [14] Bothe, D.: Multivalued perturbations of m-accretive differential inclusions.Israel J. Math. 108 (1998), 109–138. MR 1669396, 10.1007/BF02783044
Reference: [15] Carmichael, R.D.: The general theory of linear $ q$-difference equations.American J. Math. 34 (1912), 147–168. MR 1506145, 10.2307/2369887
Reference: [16] Corduneanu, C.: Integral Equations and Stability of Feedback Systems.Academic Press, New York, 1973. Zbl 0273.45001, MR 0358245
Reference: [17] Dudek, S.: Fixed point theorems in Fréchet Algebras and Fréchet spaces and applications to nonlinear integral equations.Appl. Anal. Discrete Math. 11 (2017), 340–357. MR 3719830, 10.2298/AADM1702340D
Reference: [18] Dudek, S., Olszowy, L.: Continuous dependence of the solutions of nonlinear integral quadratic Volterra equation on the parameter.J. Funct. Spaces (2015), 9 pp., Article ID 471235. MR 3319202
Reference: [19] El-Shahed, M., Hassa, H.A.: Positive solutions of ${q}$-difference equation.Proc. Amer. Math. Soc. 138 (2010), 1733–1738. MR 2587458, 10.1090/S0002-9939-09-10185-5
Reference: [20] Etemad, S., Ntouyas, S.K., Ahmad, B.: Existence theory for a fractional $q$-integro-difference equation with $q$-integral boundary conditions of different orders.Mathematics 7 (2019), 1–15. 10.3390/math7080659
Reference: [21] Granas, A., Dugundji, J.: Fixed Point Theory.Springer-Verlag, New York, 2003. Zbl 1025.47002, MR 1987179
Reference: [22] Kac, V., Cheung, P.: Quantum Calculus.Springer, New York, 2002. Zbl 0986.05001, MR 1865777
Reference: [23] Kilbas, A.A.: Hadamard-type fractional calculus.J. Korean Math. Soc. 38 (6) (2001), 1191–1204. MR 1858760
Reference: [24] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. Zbl 1092.45003, MR 2218073
Reference: [25] Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces.Nonlinear Anal. 4 (1980), 985–999. MR 0586861, 10.1016/0362-546X(80)90010-3
Reference: [26] Olszowy, L.: Existence of mild solutions for the semilinear nonlocal problem in Banach spaces.Nonlinear Anal. 81 (2013), 211–223. MR 3016450, 10.1016/j.na.2012.11.001
Reference: [27] Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: Fractional integrals and derivatives in $q$-calculus.Appl. Anal. Discrete Math. 1 (2007), 311–323. MR 2316607, 10.2298/AADM0701311R
Reference: [28] Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: On $q$-analogues of Caputo derivative and Mittag-Leffler function.Fract. Calc. Appl. Anal. 10 (2007), 359–373. MR 2378985
Reference: [29] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications.Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian. MR 1347689
Reference: [30] Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media.Springer, Heidelberg; Higher Education Press, Beijing, 2010. MR 2796453
Reference: [31] Tenreiro Machado, J.A., Kiryakova, V.: The chronicles of fractional calculus.Fract. Calc. Appl. Anal. 20 (2017), 307–336. MR 3657873
Reference: [32] Zhou, Y.: Basic Theory of Fractional Differential Equations.World Scientific, Singapore, 2014. MR 3287248
.

Files

Files Size Format View
ArchMathRetro_056-2020-4_2.pdf 559.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo