Previous |  Up |  Next

Article

Title: Repdigits in generalized Pell sequences (English)
Author: Bravo, Jhon J.
Author: Herrera, Jose L.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 4
Year: 2020
Pages: 249-262
Summary lang: English
.
Category: math
.
Summary: For an integer $k\ge 2$, let $({n})_n$ be the $k-$generalized Pell sequence which starts with $0,\ldots ,0,1$ ($k$ terms) and each term afterwards is given by the linear recurrence ${n} = 2{n-1}+{n-2}+\cdots +{n-k}$. In this paper, we find all $k$-generalized Pell numbers with only one distinct digit (the so-called repdigits). Some interesting estimations involving generalized Pell numbers, that we believe are of independent interest, are also deduced. This paper continues a previous work that searched for repdigits in the usual Pell sequence $(P_n^{(2)})_n$. (English)
Keyword: generalized Pell numbers
Keyword: repdigits
Keyword: linear forms in logarithms
Keyword: reduction method
MSC: 11B39
MSC: 11J86
idZBL: Zbl 07285963
idMR: MR4173077
DOI: 10.5817/AM2020-4-249
.
Date available: 2020-10-30T16:42:21Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148391
.
Reference: [1] Baker, A., Davenport, H.: The equations $3x^2-2=y^2$ and $8x^2-7=z^2$.Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. MR 0248079
Reference: [2] Bravo, J.J., Gómez, C.A., Luca, F.: Powers of two as sums of two $k-$Fibonacci numbers.Miskolc Math. Notes 17 (1) (2016), 85–100. MR 3527869, 10.18514/MMN.2016.1505
Reference: [3] Bravo, J.J., Herrera, J.L., Luca, F.: On a generalization of the Pell sequence.doi:10.21136/MB.2020.0098-19 on line in Math. Bohem. 10.21136/MB.2020.0098-19
Reference: [4] Bravo, J.J., Luca, F.: On a conjecture about repdigits in $k-$generalized Fibonacci sequences.Publ. Math. Debrecen 82 (3–4) (2013), 623–639. MR 3066434, 10.5486/PMD.2013.5390
Reference: [5] Bravo, J.J., Luca, F.: Repdigits in $k$-Lucas sequences.Proc. Indian Acad. Sci. Math. Sci. 124 (2) (2014), 141–154. MR 3218885, 10.1007/s12044-014-0174-7
Reference: [6] Dujella, A., Pethö, A.: A generalization of a theorem of Baker and Davenport.Quart. J. Math. Oxford Ser. (2) 49 (195) (1998), 291–306. Zbl 0911.11018, MR 1645552
Reference: [7] Faye, B., Luca, F.: Pell and Pell-Lucas numbers with only one distinct digits.Ann. of Math. 45 (2015), 55–60. MR 3438812
Reference: [8] Kiliç, E.: The Binet formula, sums and representations of generalized Fibonacci $p$-numbers.European J. Combin. 29 (2008), 701–711. MR 2397350, 10.1016/j.ejc.2007.03.004
Reference: [9] Kiliç, E.: On the usual Fibonacci and generalized order$-k$ Pell numbers.Ars Combin 109 (2013), 391–403. MR 2426404
Reference: [10] Kiliç, E., Taşci, D.: The generalized Binet formula, representation and sums of the generalized order$-k$ Pell numbers.Taiwanese J. Math. 10 (6) (2006), 1661–1670. MR 2275152, 10.11650/twjm/1500404581
Reference: [11] Koshy, T.: Fibonacci and Lucas Numbers with Applications.Pure and Applied Mathematics, Wiley-Interscience Publications, New York, 2001. MR 1855020
Reference: [12] Luca, F.: Fibonacci and Lucas numbers with only one distinct digit.Port. Math. 57 (2) (2000), 243–254. Zbl 0958.11007, MR 1759818
Reference: [13] Marques, D.: On $k$-generalized Fibonacci numbers with only one distinct digit.Util. Math. 98 (2015), 23–31. MR 3410879
Reference: [14] Matveev, E.M.: An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II.Izv. Ross. Akad. Nauk Ser. Mat. 64 (6) (2000), 125–180, translation in Izv. Math. 64 (2000), no. 6, 1217–1269. MR 1817252
Reference: [15] Normenyo, B., Luca, F., Togbé, A.: Repdigits as sums of three Pell numbers.Period. Math. Hungarica 77 (2) (2018), 318–328. MR 3866634, 10.1007/s10998-018-0247-y
Reference: [16] Normenyo, B., Luca, F., Togbé, A.: Repdigits as sums of four Pell numbers.Bol. Soc. Mat. Mex. (3) 25 (2) (2019), 249–266. MR 3964309, 10.1007/s40590-018-0202-1
.

Files

Files Size Format View
ArchMathRetro_056-2020-4_4.pdf 552.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo