Previous |  Up |  Next

Article

Title: On Riemann-Poisson Lie groups (English)
Author: Alioune, Brahim
Author: Boucetta, Mohamed
Author: Sid’Ahmed Lessiad, Ahmed
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 4
Year: 2020
Pages: 225-247
Summary lang: English
.
Category: math
.
Summary: A Riemann-Poisson Lie group is a Lie group endowed with a left invariant Riemannian metric and a left invariant Poisson tensor which are compatible in the sense introduced in [4]. We study these Lie groups and we give a characterization of their Lie algebras. We give also a way of building these Lie algebras and we give the list of such Lie algebras up to dimension 5. (English)
Keyword: Lie group
Keyword: Poisson manifolds
Keyword: Riemannian metric
MSC: 22E05
MSC: 53A15
MSC: 53D17
idZBL: Zbl 07285962
idMR: MR4173076
DOI: 10.5817/AM2020-4-225
.
Date available: 2020-10-30T16:41:02Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148390
.
Reference: [1] Ait Haddou, M., Boucetta, M., Lebzioui, H.: Left-invariant Lorentzian flat metrics on Lie groups.J. Lie Theory 22 (1) (2012), 269–289. MR 2933940
Reference: [2] Boucetta, M.: Compatibilité des structures pseudo-riemanniennes et des structures de Poisson.C.R. Acad. Sci. Paris Sér. I 333 (2001), 763–768. MR 1868950, 10.1016/S0764-4442(01)02132-2
Reference: [3] Boucetta, M.: Riemann-Poisson manifolds and Kähler-Riemann foliations.C.R. Acad. Sci. Paris, Sér. I 336 (2003), 423–428. MR 1979358, 10.1016/S1631-073X(03)00079-7
Reference: [4] Boucetta, M.: Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras.Differential Geom. Appl. 20 (2004), 279–291. MR 2053915, 10.1016/j.difgeo.2003.10.013
Reference: [5] Boucetta, M.: On the Riemann-Lie algebras and Riemann-Poisson Lie groups.J. Lie Theory 15 (1) (2005), 183–195. MR 2115235
Reference: [6] Deninger, C., Singhof, W.: Real polarizable hodge structures arising from foliation.Ann. Global Anal. Geom. 21 (2002), 377–399. MR 1910458, 10.1023/A:1015652906096
Reference: [7] Dufour, J.P., Zung, N.T.: Poisson Structures and Their Normal Forms.Progress in Mathematics, vol. 242, Birkhäuser Verlag, 2005. MR 2178041
Reference: [8] Fernandes, R.L.: Connections in Poisson Geometry 1: Holonomy and invariants.J. Differential Geom. 54 (2000), 303–366. MR 1818181, 10.4310/jdg/1214341648
Reference: [9] Ha, K.Y., Lee, J.B.: Left invariant metrics and curvatures on simply connected three dimensional Lie groups.Math. Nachr. 282 (2009), 868–898. MR 2530885, 10.1002/mana.200610777
Reference: [10] Hawkin, E.: The structure of noncommutative deformations.J. Differential Geom. 77 (2007), 385–424. MR 2362320, 10.4310/jdg/1193074900
Reference: [11] Milnor, J.: Curvatures of left invariant metrics on Lie Groups.Adv. Math. 21 (1976), 293–329. MR 0425012, 10.1016/S0001-8708(76)80002-3
Reference: [12] Ovando, G.: Invariant pseudo-Kähler metrics in dimension four.J. Lie Theory 16 (2006), 371–391. MR 2197598
Reference: [13] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds.Progress in Mathematics, vol. 118, Birkhäuser, Berlin, 1994. Zbl 0810.53019, MR 1269545
.

Files

Files Size Format View
ArchMathRetro_056-2020-4_3.pdf 692.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo