Previous |  Up |  Next

Article

Keywords:
torsion group; elliptic curve; cyclotomic field
Summary:
We determine explicitly the structure of the torsion group over the maximal abelian extension of $\mathbb {Q}$ and over the maximal $p$-cyclotomic extensions of $\mathbb {Q}$ for the family of rational elliptic curves given by $y^2 = x^3 + B$, where $B$ is an integer.
References:
[1] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24 (1997), 235-265. DOI 10.1006/jsco.1996.0125 | MR 1484478 | Zbl 0898.68039
[2] Bourdon, A., Clark, P. L.: Torsion points and Galois representations on CM elliptic curves. Pac. J. Math. 305 (2020), 43-88. DOI 10.2140/pjm.2020.305.43 | MR 4077686 | Zbl 07180891
[3] Daniels, H. B., Lozano-Robledo, Á., Najman, F., Sutherland, A. V.: Torsion subgroups of rational elliptic curves over the compositum of all cubic fields. Math. Comput. 87 (2018), 425-458. DOI 10.1090/mcom/3213 | MR 3716201 | Zbl 1422.11132
[4] Dey, P. K.: Elliptic curves with rank 0 over number fields. Funct. Approximatio Comment. Math. 56 (2017), 25-37. DOI 10.7169/facm/1585 | MR 3629008 | Zbl 1390.14089
[5] Dey, P. K.: Torsion groups of a family of elliptic curves over number fields. Czech. Math. J. 69 (2019), 161-171. DOI 10.21136/CMJ.2018.0214-17 | MR 3923581 | Zbl 07088776
[6] Frey, G., Jarden, M.: Approximation theory and the rank of abelian varieties over large algebraic fields. Proc. Lond. Math. Soc., III. Ser. 28 (1974), 112-128. DOI 10.1112/plms/s3-28.1.112 | MR 0337997 | Zbl 0275.14021
[7] Fujita, Y.: Torsion subgroups of elliptic curves with non-cyclic torsion over $\mathbb{Q}$ in elementary abelian 2-extensions of $\mathbb{Q}$. Acta Arith. 115 (2004), 29-45. DOI 10.4064/aa115-1-3 | MR 2102804 | Zbl 1114.11052
[8] Fujita, Y.: Torsion subgroups of elliptic curves in elementary abelian 2-extensions of $\mathbb{Q}$. J. Number Theory 114 (2005), 124-134. DOI 10.1016/j.jnt.2005.03.005 | MR 2163908 | Zbl 1087.11038
[9] Gal, I., Grizzard, R.: On the compositum of all degree $d$ extensions of a number field. J. Th{é}or. Nombres Bordx. 26 (2014), 655-672. DOI 10.5802/jtnb.884 | MR 3320497 | Zbl 1360.11112
[10] González-Jiménez, E.: Complete classification of the torsion structures of rational elliptic curves over quintic fields. J. Algebra 478 (2017), 484-505. DOI 10.1016/j.jalgebra.2017.01.012 | MR 3621686 | Zbl 1369.11040
[11] González-Jiménez, E., Lozano-Robledo, Á.: On the torsion of rational elliptic curves over quartic fields. Math. Comput. 87 (2018), 1457-1478. DOI 10.1090/mcom/3235 | MR 3766394 | Zbl 1397.11092
[12] Kamienny, S.: Torsion points on elliptic curves and $q$-coefficients of modular forms. Invent. Math. 109 (1992), 221-229. DOI 10.1007/BF01232025 | MR 1172689 | Zbl 0773.14016
[13] Katz, N. M., Lang, S.: Finiteness theorems in geometric classfield theory. Enseign. Math., II. Sér. Appendix by K. Ribet: Torsion points on abelian varieties in cyclotomic extensions 27 1981 285-319. DOI 10.5169/seals-51754 | MR 0659153 | Zbl 0495.14011
[14] Kenku, M. A., Momose, F.: Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109 (1988), 125-149. DOI 10.1017/S0027763000002816 | MR 0931956 | Zbl 0647.14020
[15] Laska, M., Lorenz, M.: Rational points on elliptic curves over $\mathbb{Q}$ in elementary abelian 2-extensions of $\mathbb{Q}$. J. Reine Angew. Math. 355 (1985), 163-172. DOI 10.1515/crll.1985.355.163 | MR 0772489 | Zbl 0586.14013
[16] Marcus, D. A.: Number Fields. Universitext, Springer, New York (1977). DOI 10.1007/978-3-319-90233-3 | MR 0457396 | Zbl 0383.12001
[17] Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math., Inst. Hautes Étud. Sci. 47 (1978), 33-186. DOI 10.1007/BF02684339 | MR 0488287 | Zbl 0394.14008
[18] Najman, F.: Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$. Math. Res. Lett. 23 (2016), 245-272. DOI 10.4310/MRL.2016.v23.n1.a12 | MR 3512885 | Zbl 1416.11084
Partner of
EuDML logo