Previous |  Up |  Next

Article

Title: The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$ (English)
Author: Dimabayao, Jerome Tomagan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 979-995
Summary lang: English
.
Category: math
.
Summary: We determine explicitly the structure of the torsion group over the maximal abelian extension of $\mathbb {Q}$ and over the maximal $p$-cyclotomic extensions of $\mathbb {Q}$ for the family of rational elliptic curves given by $y^2 = x^3 + B$, where $B$ is an integer. (English)
Keyword: torsion group
Keyword: elliptic curve
Keyword: cyclotomic field
MSC: 11R18
MSC: 14H52
idZBL: 07285974
idMR: MR4181791
DOI: 10.21136/CMJ.2020.0082-19
.
Date available: 2020-11-18T09:43:42Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148406
.
Reference: [1] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language.J. Symb. Comput. 24 (1997), 235-265. Zbl 0898.68039, MR 1484478, 10.1006/jsco.1996.0125
Reference: [2] Bourdon, A., Clark, P. L.: Torsion points and Galois representations on CM elliptic curves.Pac. J. Math. 305 (2020), 43-88. Zbl 07180891, MR 4077686, 10.2140/pjm.2020.305.43
Reference: [3] Daniels, H. B., Lozano-Robledo, Á., Najman, F., Sutherland, A. V.: Torsion subgroups of rational elliptic curves over the compositum of all cubic fields.Math. Comput. 87 (2018), 425-458. Zbl 1422.11132, MR 3716201, 10.1090/mcom/3213
Reference: [4] Dey, P. K.: Elliptic curves with rank 0 over number fields.Funct. Approximatio Comment. Math. 56 (2017), 25-37. Zbl 1390.14089, MR 3629008, 10.7169/facm/1585
Reference: [5] Dey, P. K.: Torsion groups of a family of elliptic curves over number fields.Czech. Math. J. 69 (2019), 161-171. Zbl 07088776, MR 3923581, 10.21136/CMJ.2018.0214-17
Reference: [6] Frey, G., Jarden, M.: Approximation theory and the rank of abelian varieties over large algebraic fields.Proc. Lond. Math. Soc., III. Ser. 28 (1974), 112-128. Zbl 0275.14021, MR 0337997, 10.1112/plms/s3-28.1.112
Reference: [7] Fujita, Y.: Torsion subgroups of elliptic curves with non-cyclic torsion over $\mathbb{Q}$ in elementary abelian 2-extensions of $\mathbb{Q}$.Acta Arith. 115 (2004), 29-45. Zbl 1114.11052, MR 2102804, 10.4064/aa115-1-3
Reference: [8] Fujita, Y.: Torsion subgroups of elliptic curves in elementary abelian 2-extensions of $\mathbb{Q}$.J. Number Theory 114 (2005), 124-134. Zbl 1087.11038, MR 2163908, 10.1016/j.jnt.2005.03.005
Reference: [9] Gal, I., Grizzard, R.: On the compositum of all degree $d$ extensions of a number field.J. Th{é}or. Nombres Bordx. 26 (2014), 655-672. Zbl 1360.11112, MR 3320497, 10.5802/jtnb.884
Reference: [10] González-Jiménez, E.: Complete classification of the torsion structures of rational elliptic curves over quintic fields.J. Algebra 478 (2017), 484-505. Zbl 1369.11040, MR 3621686, 10.1016/j.jalgebra.2017.01.012
Reference: [11] González-Jiménez, E., Lozano-Robledo, Á.: On the torsion of rational elliptic curves over quartic fields.Math. Comput. 87 (2018), 1457-1478. Zbl 1397.11092, MR 3766394, 10.1090/mcom/3235
Reference: [12] Kamienny, S.: Torsion points on elliptic curves and $q$-coefficients of modular forms.Invent. Math. 109 (1992), 221-229. Zbl 0773.14016, MR 1172689, 10.1007/BF01232025
Reference: [13] Katz, N. M., Lang, S.: Finiteness theorems in geometric classfield theory.Enseign. Math., II. Sér. Appendix by K. Ribet: Torsion points on abelian varieties in cyclotomic extensions 27 1981 285-319. Zbl 0495.14011, MR 0659153, 10.5169/seals-51754
Reference: [14] Kenku, M. A., Momose, F.: Torsion points on elliptic curves defined over quadratic fields.Nagoya Math. J. 109 (1988), 125-149. Zbl 0647.14020, MR 0931956, 10.1017/S0027763000002816
Reference: [15] Laska, M., Lorenz, M.: Rational points on elliptic curves over $\mathbb{Q}$ in elementary abelian 2-extensions of $\mathbb{Q}$.J. Reine Angew. Math. 355 (1985), 163-172. Zbl 0586.14013, MR 0772489, 10.1515/crll.1985.355.163
Reference: [16] Marcus, D. A.: Number Fields.Universitext, Springer, New York (1977). Zbl 0383.12001, MR 0457396, 10.1007/978-3-319-90233-3
Reference: [17] Mazur, B.: Modular curves and the Eisenstein ideal.Publ. Math., Inst. Hautes Étud. Sci. 47 (1978), 33-186. Zbl 0394.14008, MR 0488287, 10.1007/BF02684339
Reference: [18] Najman, F.: Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$.Math. Res. Lett. 23 (2016), 245-272. Zbl 1416.11084, MR 3512885, 10.4310/MRL.2016.v23.n1.a12
.

Files

Files Size Format View
CzechMathJ_70-2020-4_6.pdf 334.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo