Title:
|
On oscillatory first order neutral impulsive difference equations (English) |
Author:
|
Tripathy, Arun Kumar |
Author:
|
Chhatria, Gokula Nanda |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
145 |
Issue:
|
4 |
Year:
|
2020 |
Pages:
|
361-375 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We have established sufficient conditions for oscillation of a class of first order neutral impulsive difference equations with deviating arguments and fixed moments of impulsive effect. (English) |
Keyword:
|
oscillation |
Keyword:
|
nonoscillation |
Keyword:
|
impulsive difference equation |
Keyword:
|
nonlinear neutral difference equation |
Keyword:
|
delay |
MSC:
|
39A10 |
MSC:
|
39A12 |
idZBL:
|
07286018 |
idMR:
|
MR4221839 |
DOI:
|
10.21136/MB.2019.0002-18 |
. |
Date available:
|
2020-11-18T09:55:46Z |
Last updated:
|
2021-04-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148429 |
. |
Reference:
|
[1] Lakshmikantham, V., Bainov, D. D., Simieonov, P. S.: Oscillation Theory of Impulsive Differential Equations.Series in Modern Applied Mathematics 6. World Scientific, Singapore (1989). Zbl 0719.34002, MR 1082551, 10.1142/0906 |
Reference:
|
[2] Li, J., Shen, J.: Positive solutions for first order difference equations with impulses.Int. J. Difference Equ. 1 (2006), 225-239. Zbl 1142.39304, MR 2340076 |
Reference:
|
[3] Li, X., Xi, Q.: Oscillatory and asymptotic properties of impulsive difference equations with time-varying delays.Int. J. Difference Equ. 4 (2009), 201-209. MR 2597151 |
Reference:
|
[4] Li, Q., Zhang, Z., Guo, F., Liu, Z., Liang, H.: Oscillatory criteria for third-order difference equation with impulses.J. Comput. Appl. Math. 225 (2009), 80-86. Zbl 1161.39007, MR 2490172, 10.1016/j.cam.2008.07.002 |
Reference:
|
[5] Lu, W., Ge, W., Zhao, Z.: Oscillatory criteria for third-order nonlinear difference equation with impulses.J. Comput. Appl. Math. 234 (2010), 3366-3372. Zbl 1206.39017, MR 2665392, 10.1016/j.cam.2010.04.037 |
Reference:
|
[6] Parhi, N., Tripathy, A. K.: Oscillation criteria for forced nonlinear neutral delay difference equations of first order.Differ. Equ. Dyn. Syst. 8 (2000), 81-97. Zbl 0978.39006, MR 1858770 |
Reference:
|
[7] Parhi, N., Tripathy, A. K.: On asymptotic behaviour and oscillation of forced first order nonlinear neutral difference equations.Fasc. Math. 32 (2001), 83-95. Zbl 0994.39011, MR 1867949 |
Reference:
|
[8] Parhi, N., Tripathy, A. K.: Oscillation of a class of neutral difference equations of first order.J. Difference Equ. Appl. 9 (2003), 933-946. Zbl 1135.39301, MR 1996344, 10.1080/1023619031000047680 |
Reference:
|
[9] Parhi, N., Tripathy, A. K.: Oscillation of forced nonlinear neutral delay difference equations of first order.Czech. Math. J. 53 (2003), 83-101. Zbl 1016.39011, MR 1962001, 10.1023/A:1022975525370 |
Reference:
|
[10] Peng, M.: Oscillation theorems for second-order nonlinear neutral delay difference equations with impulses.Comput. Math. Appl. 44 (2002), 741-748. Zbl 1035.39006, MR 1925817, 10.1016/s0898-1221(02)00187-6 |
Reference:
|
[11] Peng, M.: Oscillation criteria for second-order impulsive delay difference equations.Appl. Math. Comput. 146 (2003), 227-235. Zbl 1036.39015, MR 2007781, 10.1016/s0096-3003(02)00539-8 |
Reference:
|
[12] Tripathy, A. K.: Oscillation criteria for a class of first order neutral impulsive differential-difference equations.J. Appl. Anal. Comput. 4 (2014), 89-101. Zbl 1292.34066, MR 3164912, 10.11948/2014003 |
Reference:
|
[13] Wang, P., Wang, W.: Boundary value problems for first order impulsive difference equations.Int. J. Difference Equ. 1 (2006), 249-259. Zbl 1142.39314, MR 2340078 |
Reference:
|
[14] Wei, G. P.: The persistance of nonoscillatory solutions of difference equation under impulsive perturbations.Comput. Math. Appl. 50 (2005), 1579-1586. Zbl 1088.39010, MR 2185709, 10.1016/j.camwa.2005.08.025 |
Reference:
|
[15] Zhang, H., Chen, L.: Oscillation criteria for a class of second-order impulsive delay difference equations.Adv. Complex Syst. 9 (2006), 69-76. Zbl 1113.39014, MR 2264168, 10.1142/s0219525906000677 |
. |