Previous |  Up |  Next

Article

Title: Some results on top local cohomology modules with respect to a pair of ideals (English)
Author: Jahandoust, Saeed
Author: Naghipour, Reza
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 4
Year: 2020
Pages: 377-386
Summary lang: English
.
Category: math
.
Summary: Let $I$ and $J$ be ideals of a Noetherian local ring $(R,\mathfrak m)$ and let $M$ be a nonzero finitely generated $R$-module. We study the relation between the vanishing of $H_{I,J}^{\dim M}(M)$ and the comparison of certain ideal topologies. Also, we characterize when the integral closure of an ideal relative to the Noetherian $R$-module $M/JM$ is equal to its integral closure relative to the Artinian $R$-module $H_{I,J}^{\dim M}(M)$. (English)
Keyword: Artinian module
Keyword: integral closure
Keyword: local cohomology
Keyword: quasi-unmixed module
MSC: 13B22
MSC: 13D45
MSC: 13E05
idZBL: 07286019
idMR: MR4221840
DOI: 10.21136/MB.2019.0124-18
.
Date available: 2020-11-18T09:56:15Z
Last updated: 2021-04-19
Stable URL: http://hdl.handle.net/10338.dmlcz/148430
.
Reference: [1] Brodmann, M. P.: Asymptotic stability of $ Ass(M/I^nM)$.Proc. Am. Math. Soc. 74 (1979), 16-18. Zbl 0395.13008, MR 0521865, 10.2307/2042097
Reference: [2] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627, 10.1017/CBO9780511629204
Reference: [3] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). Zbl 0909.13005, MR 1251956, 10.1017/CBO9780511608681
Reference: [4] Chu, L.: Top local cohomology modules with respect to a pair of ideals.Proc. Am. Math. Soc. 139 (2011), 777-782. Zbl 1210.13018, MR 2745630, 10.1090/s0002-9939-2010-10471-9
Reference: [5] Chu, L., Wang, Q.: Some results on local cohomology modules defined by a pair of ideals.J. Math. Kyoto Univ. 49 (2009), 193-200. Zbl 1174.13024, MR 2531134, 10.1215/kjm/1248983036
Reference: [6] Divaani-Aazar, K.: Vanishing of the top local cohomology modules over Noetherian rings.Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 23-35. Zbl 1179.13012, MR 2508486, 10.1007/s12044-009-0003-6
Reference: [7] Katz, D., Jr., L. J. Ratliff: $u$-essential prime divisors and sequences over an ideal.Nagoya Math. J. 103 (1986), 39-66. Zbl 0569.13002, MR 0858471, 10.1017/s002776300000057x
Reference: [8] Martí-Farré, J.: Symbolic powers and local cohomology.Mathematika 42 (1995),182-187. Zbl 0824.13010, MR 1346683, 10.1112/s0025579300011463
Reference: [9] Matsumura, H.: Commutative Ring Theory.Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). Zbl 0603.13001, MR 0879273, 10.1017/CBO9781139171762
Reference: [10] McAdam, S.: Quintasymptotic primes and four results of Schenzel.J. Pure Appl. Algebra 47 (1987), 283-298. Zbl 0641.13005, MR 0910425, 10.1016/0022-4049(87)90052-1
Reference: [11] Merighe, L. C., Pérez, V. H. Jorge: On a question of D. Rees on classical integral closure and integral closure relative to an Artinian module.(to appear) in J. Algebra Appl (2019). MR 4070490, 10.1142/S0219498820500334
Reference: [12] Naghipour, R., Sedghi, M.: A characterization of Cohen-Macaulay modules and local cohomology.Arch. Math. 87 (2006), 303-308. Zbl 1099.13007, MR 2263476, 10.1007/s00013-006-1651-8
Reference: [13] Sharp, R. Y., Taherizadeh, A.-J.: Reductions and integral closures of ideals relative to an Artinian module.J. Lond. Math. Soc., II. Ser. 37 (1988), 203-218. Zbl 0656.13001, MR 0928518, 10.1112/jlms/s2-37.2.203
Reference: [14] Sharp, R. Y., Tiraş, Y., Yassi, M.: Integral closures of ideals relative to local cohomology modules over quasi-unmixed local rings.J. Lond. Math. Soc., II. Ser. 42 (1990), 385-392. Zbl 0733.13001, MR 1087214, 10.1112/jlms/s2-42.3.385
Reference: [15] Swanson, I., Huneke, C.: Integral Closure of Ideals, Rings, and Modules.London Mathematical Society Lecture Note Series 336. Cambridge University Press, Cambridge (2006). Zbl 1117.13001, MR 2266432
Reference: [16] Takahashi, R., Yoshino, Y., Yoshizawa, T.: Local cohomology based on a nonclosed support defined by a pair of ideals.J. Pure Appl. Algebra 213 (2009), 582-600. Zbl 1160.13013, MR 2483839, 10.1016/j.jpaa.2008.09.008
.

Files

Files Size Format View
MathBohem_145-2020-4_3.pdf 297.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo