Previous |  Up |  Next

Article

Keywords:
Artinian module; integral closure; local cohomology; quasi-unmixed module
Summary:
Let $I$ and $J$ be ideals of a Noetherian local ring $(R,\mathfrak m)$ and let $M$ be a nonzero finitely generated $R$-module. We study the relation between the vanishing of $H_{I,J}^{\dim M}(M)$ and the comparison of certain ideal topologies. Also, we characterize when the integral closure of an ideal relative to the Noetherian $R$-module $M/JM$ is equal to its integral closure relative to the Artinian $R$-module $H_{I,J}^{\dim M}(M)$.
References:
[1] Brodmann, M. P.: Asymptotic stability of $ Ass(M/I^nM)$. Proc. Am. Math. Soc. 74 (1979), 16-18. DOI 10.2307/2042097 | MR 0521865 | Zbl 0395.13008
[2] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511629204 | MR 1613627 | Zbl 0903.13006
[3] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511608681 | MR 1251956 | Zbl 0909.13005
[4] Chu, L.: Top local cohomology modules with respect to a pair of ideals. Proc. Am. Math. Soc. 139 (2011), 777-782. DOI 10.1090/s0002-9939-2010-10471-9 | MR 2745630 | Zbl 1210.13018
[5] Chu, L., Wang, Q.: Some results on local cohomology modules defined by a pair of ideals. J. Math. Kyoto Univ. 49 (2009), 193-200. DOI 10.1215/kjm/1248983036 | MR 2531134 | Zbl 1174.13024
[6] Divaani-Aazar, K.: Vanishing of the top local cohomology modules over Noetherian rings. Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 23-35. DOI 10.1007/s12044-009-0003-6 | MR 2508486 | Zbl 1179.13012
[7] Katz, D., Jr., L. J. Ratliff: $u$-essential prime divisors and sequences over an ideal. Nagoya Math. J. 103 (1986), 39-66. DOI 10.1017/s002776300000057x | MR 0858471 | Zbl 0569.13002
[8] Martí-Farré, J.: Symbolic powers and local cohomology. Mathematika 42 (1995),182-187. DOI 10.1112/s0025579300011463 | MR 1346683 | Zbl 0824.13010
[9] Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). DOI 10.1017/CBO9781139171762 | MR 0879273 | Zbl 0603.13001
[10] McAdam, S.: Quintasymptotic primes and four results of Schenzel. J. Pure Appl. Algebra 47 (1987), 283-298. DOI 10.1016/0022-4049(87)90052-1 | MR 0910425 | Zbl 0641.13005
[11] Merighe, L. C., Pérez, V. H. Jorge: On a question of D. Rees on classical integral closure and integral closure relative to an Artinian module. (to appear) in J. Algebra Appl (2019). DOI 10.1142/S0219498820500334 | MR 4070490
[12] Naghipour, R., Sedghi, M.: A characterization of Cohen-Macaulay modules and local cohomology. Arch. Math. 87 (2006), 303-308. DOI 10.1007/s00013-006-1651-8 | MR 2263476 | Zbl 1099.13007
[13] Sharp, R. Y., Taherizadeh, A.-J.: Reductions and integral closures of ideals relative to an Artinian module. J. Lond. Math. Soc., II. Ser. 37 (1988), 203-218. DOI 10.1112/jlms/s2-37.2.203 | MR 0928518 | Zbl 0656.13001
[14] Sharp, R. Y., Tiraş, Y., Yassi, M.: Integral closures of ideals relative to local cohomology modules over quasi-unmixed local rings. J. Lond. Math. Soc., II. Ser. 42 (1990), 385-392. DOI 10.1112/jlms/s2-42.3.385 | MR 1087214 | Zbl 0733.13001
[15] Swanson, I., Huneke, C.: Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series 336. Cambridge University Press, Cambridge (2006). MR 2266432 | Zbl 1117.13001
[16] Takahashi, R., Yoshino, Y., Yoshizawa, T.: Local cohomology based on a nonclosed support defined by a pair of ideals. J. Pure Appl. Algebra 213 (2009), 582-600. DOI 10.1016/j.jpaa.2008.09.008 | MR 2483839 | Zbl 1160.13013
Partner of
EuDML logo