Title:
|
Some monounary algebras with EKP (English) |
Author:
|
Halušková, Emília |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
145 |
Issue:
|
4 |
Year:
|
2020 |
Pages:
|
401-414 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
An algebra $\cal A$ is said to have the endomorphism kernel property (EKP) if every congruence on $\cal A$ is the kernel of some endomorphism of $\cal A$. Three classes of monounary algebras are dealt with. For these classes, all monounary algebras with EKP are described. (English) |
Keyword:
|
monounary algebra |
Keyword:
|
endomorphism |
Keyword:
|
congruence |
Keyword:
|
kernel |
MSC:
|
08A30 |
MSC:
|
08A35 |
MSC:
|
08A60 |
idZBL:
|
07286021 |
idMR:
|
MR4221842 |
DOI:
|
10.21136/MB.2019.0128-18 |
. |
Date available:
|
2020-11-18T09:57:23Z |
Last updated:
|
2021-04-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148432 |
. |
Reference:
|
[1] Araújo, J., Konieczny, J.: Centralizers in the full transformation semigroup.Semigroup Forum 86 (2013), 1-31. Zbl 1267.20090, MR 3016258, 10.1007/s00233-012-9424-0 |
Reference:
|
[2] Blyth, T. S., Fang, J., Silva, H. J.: The endomorphism kernel property in finite distributive lattices and De Morgan algebras.Commun. Algebra 32 (2004), 2225-2242. Zbl 1060.06018, MR 2100466, 10.1081/agb-120037216 |
Reference:
|
[3] Blyth, T. S., Fang, J., Wang, L.-B.: The strong endomorphism kernel property in distributive double $p$-algebras.Sci. Math. Jpn. 76 (2013), 227-234. Zbl 1320.06009, MR 3330070 |
Reference:
|
[4] Blyth, T. S., Silva, H. J.: The strong endomorphism kernel property in Ockham algebras.Commun. Algebra 36 (2008), 1682-1694. Zbl 1148.06005, MR 2424259, 10.1080/00927870801937240 |
Reference:
|
[5] Černegová, M., Jakubíková-Studenovská, D.: Reconstructability of a monounary algebra from its second centralizer.Commun. Algebra 45 (2017), 4656-4666. Zbl 06812755, MR 3670337, 10.1080/00927872.2016.1276927 |
Reference:
|
[6] Fang, G., Fang, J.: The strong endomorphism kernel property in distributive $p$-algebras.Southeast Asian Bull. Math. 37 (2013), 491-497. Zbl 1299.06017, MR 3134913 |
Reference:
|
[7] Fang, J., Sun, Z.-J.: Semilattices with the strong endomorphism kernel property.Algebra Univers. 70 (2013), 393-401. Zbl 1305.06004, MR 3127981, 10.1007/s00012-013-0254-z |
Reference:
|
[8] Gaitán, H., Cortés, Y. J.: The endomorphism kernel property in finite Stone algebras.JP J. Algebra Number Theory Appl. 14 (2009), 51-64. Zbl 1191.06007, MR 2548439 |
Reference:
|
[9] Guričan, J.: The endomorphism kernel property for modular $p$-algebras and Stone lattices of order $n$.JP J. Algebra Number Theory Appl. 25 (2012), 69-90. Zbl 1258.06002, MR 2976467 |
Reference:
|
[10] Guričan, J.: A note on the endomorphism kernel property.JP J. Algebra Number Theory Appl. 33 (2014), 133-139. Zbl 1302.08004 |
Reference:
|
[11] Guričan, J.: Strong endomorphism kernel property for Brouwerian algebras.JP J. Algebra Number Theory Appl. 36 (2015), 241-258. Zbl 1333.06025 |
Reference:
|
[12] Guričan, J., Ploščica, M.: The strong endomorphism kernel property for modular p-algebras and for distributive lattices.Algebra Univers. 75 (2016), 243-255. Zbl 1348.06008, MR 3515400, 10.1007/s00012-016-0370-7 |
Reference:
|
[13] Halušková, E.: Strong endomorphism kernel property for monounary algebras.Math. Bohem. 143 (2018), 161-171. Zbl 06890412, MR 3831484, 10.21136/mb.2017.0056-16 |
Reference:
|
[14] Jakubíková-Studenovská, D., Pócs, J.: Cardinality of retracts of monounary algebras.Czech. Math. J. 58 (2008), 469-479. Zbl 1174.08303, MR 2411102, 10.1007/s10587-008-0028-5 |
Reference:
|
[15] Jakubíková-Studenovská, D., Pócs, J.: Monounary Algebras.Pavol Josef Šafárik University, Košice (2009). Zbl 1181.08001 |
Reference:
|
[16] Jakubíková-Studenovská, D., Potpinková, K.: The endomorphism spectrum of a monounary algebra.Math. Slovaca 64 (2014), 675-690. Zbl 1332.08003, MR 3227764, 10.2478/s12175-014-0233-7 |
Reference:
|
[17] Jakubíková-Studenovská, D., Šuličová, M.: Centralizers of a monounary algebra.Asian-Eur. J. Math. 8 (2015), Article No. 1550007, 12 pages. Zbl 1315.08003, MR 3322550, 10.1142/s1793557115500072 |
Reference:
|
[18] Jakubíková-Studenovská, D., Šuličová, M.: Green's relations in the commutative centralizers of monounary algebras.Demonstr. Math. 48 (2015), 536-545. Zbl 1343.08001, MR 3430887, 10.1515/dema-2015-0038 |
Reference:
|
[19] Jónsson, B.: Topics in Universal Algebra.Lecture Notes in Mathematics 250. Springer, Berlin (1972). Zbl 0225.08001, MR 0345895, 10.1007/bfb0058648 |
Reference:
|
[20] Konieczny, J.: Green's relations and regularity in centralizers of permutations.Glasg. Math. J. 41 (1999), 45-57. Zbl 0924.20049, MR 1689659, 10.1017/s0017089599970301 |
Reference:
|
[21] Konieczny, J.: Second centralizers of partial transformations.Czech. Math. J. 51 (2001), 873-888. Zbl 1003.20053, MR 1864048, 10.1023/a:1013729316147 |
Reference:
|
[22] Konieczny, J.: Centralizers in the semigroup of injective transformations on an infinite set.Bull. Aust. Math. Soc. 82 (2010), 305-321. Zbl 1205.20063, MR 2685154, 10.1017/s0004972710000304 |
Reference:
|
[23] Konieczny, J.: Infinite injective transformations whose centralizers have simple structure.Cent. Eur. J. Math. 9 (2011), 23-35. Zbl 1214.20057, MR 2753879, 10.2478/s11533-010-0086-4 |
Reference:
|
[24] Novotný, M., Kopeček, O., Chvalina, J.: Homomorphic Transformations: Why and Possible Ways to How.Masaryk University, Brno (2012). 10.5817/cz.muni.m210-5831-2012 |
Reference:
|
[25] Pitkethly, J., Davey, B.: Dualisability. Unary Algebras and Beyond.Advances in Mathematics 9. Springer, New York (2005). Zbl 1085.08001, MR 2161626, 10.1007/0-387-27570-3 |
Reference:
|
[26] Popov, B. V., Kovaleva, O. V.: On a characterization of monounary algebras by their endomorphism semigroups.Semigroup Forum 73 (2006), 444-456. Zbl 1115.08005, MR 2279911, 10.1007/s00233-006-0635-0 |
Reference:
|
[27] Pozdnyakova, I. V.: Semigroups of endomorphisms of some infinite monounary algebras.Mat. Metody Fiz.-Mekh. Polya 55 Russian (2012), 29-38 translated in J. Math. Sci. 190 658-668. Zbl 1274.08023, MR 3012027, 10.1007/s10958-013-1278-9 |
. |