Previous |  Up |  Next

Article

Title: Some monounary algebras with EKP (English)
Author: Halušková, Emília
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 4
Year: 2020
Pages: 401-414
Summary lang: English
.
Category: math
.
Summary: An algebra $\cal A$ is said to have the endomorphism kernel property (EKP) if every congruence on $\cal A$ is the kernel of some endomorphism of $\cal A$. Three classes of monounary algebras are dealt with. For these classes, all monounary algebras with EKP are described. (English)
Keyword: monounary algebra
Keyword: endomorphism
Keyword: congruence
Keyword: kernel
MSC: 08A30
MSC: 08A35
MSC: 08A60
idZBL: 07286021
idMR: MR4221842
DOI: 10.21136/MB.2019.0128-18
.
Date available: 2020-11-18T09:57:23Z
Last updated: 2021-04-19
Stable URL: http://hdl.handle.net/10338.dmlcz/148432
.
Reference: [1] Araújo, J., Konieczny, J.: Centralizers in the full transformation semigroup.Semigroup Forum 86 (2013), 1-31. Zbl 1267.20090, MR 3016258, 10.1007/s00233-012-9424-0
Reference: [2] Blyth, T. S., Fang, J., Silva, H. J.: The endomorphism kernel property in finite distributive lattices and De Morgan algebras.Commun. Algebra 32 (2004), 2225-2242. Zbl 1060.06018, MR 2100466, 10.1081/agb-120037216
Reference: [3] Blyth, T. S., Fang, J., Wang, L.-B.: The strong endomorphism kernel property in distributive double $p$-algebras.Sci. Math. Jpn. 76 (2013), 227-234. Zbl 1320.06009, MR 3330070
Reference: [4] Blyth, T. S., Silva, H. J.: The strong endomorphism kernel property in Ockham algebras.Commun. Algebra 36 (2008), 1682-1694. Zbl 1148.06005, MR 2424259, 10.1080/00927870801937240
Reference: [5] Černegová, M., Jakubíková-Studenovská, D.: Reconstructability of a monounary algebra from its second centralizer.Commun. Algebra 45 (2017), 4656-4666. Zbl 06812755, MR 3670337, 10.1080/00927872.2016.1276927
Reference: [6] Fang, G., Fang, J.: The strong endomorphism kernel property in distributive $p$-algebras.Southeast Asian Bull. Math. 37 (2013), 491-497. Zbl 1299.06017, MR 3134913
Reference: [7] Fang, J., Sun, Z.-J.: Semilattices with the strong endomorphism kernel property.Algebra Univers. 70 (2013), 393-401. Zbl 1305.06004, MR 3127981, 10.1007/s00012-013-0254-z
Reference: [8] Gaitán, H., Cortés, Y. J.: The endomorphism kernel property in finite Stone algebras.JP J. Algebra Number Theory Appl. 14 (2009), 51-64. Zbl 1191.06007, MR 2548439
Reference: [9] Guričan, J.: The endomorphism kernel property for modular $p$-algebras and Stone lattices of order $n$.JP J. Algebra Number Theory Appl. 25 (2012), 69-90. Zbl 1258.06002, MR 2976467
Reference: [10] Guričan, J.: A note on the endomorphism kernel property.JP J. Algebra Number Theory Appl. 33 (2014), 133-139. Zbl 1302.08004
Reference: [11] Guričan, J.: Strong endomorphism kernel property for Brouwerian algebras.JP J. Algebra Number Theory Appl. 36 (2015), 241-258. Zbl 1333.06025
Reference: [12] Guričan, J., Ploščica, M.: The strong endomorphism kernel property for modular p-algebras and for distributive lattices.Algebra Univers. 75 (2016), 243-255. Zbl 1348.06008, MR 3515400, 10.1007/s00012-016-0370-7
Reference: [13] Halušková, E.: Strong endomorphism kernel property for monounary algebras.Math. Bohem. 143 (2018), 161-171. Zbl 06890412, MR 3831484, 10.21136/mb.2017.0056-16
Reference: [14] Jakubíková-Studenovská, D., Pócs, J.: Cardinality of retracts of monounary algebras.Czech. Math. J. 58 (2008), 469-479. Zbl 1174.08303, MR 2411102, 10.1007/s10587-008-0028-5
Reference: [15] Jakubíková-Studenovská, D., Pócs, J.: Monounary Algebras.Pavol Josef Šafárik University, Košice (2009). Zbl 1181.08001
Reference: [16] Jakubíková-Studenovská, D., Potpinková, K.: The endomorphism spectrum of a monounary algebra.Math. Slovaca 64 (2014), 675-690. Zbl 1332.08003, MR 3227764, 10.2478/s12175-014-0233-7
Reference: [17] Jakubíková-Studenovská, D., Šuličová, M.: Centralizers of a monounary algebra.Asian-Eur. J. Math. 8 (2015), Article No. 1550007, 12 pages. Zbl 1315.08003, MR 3322550, 10.1142/s1793557115500072
Reference: [18] Jakubíková-Studenovská, D., Šuličová, M.: Green's relations in the commutative centralizers of monounary algebras.Demonstr. Math. 48 (2015), 536-545. Zbl 1343.08001, MR 3430887, 10.1515/dema-2015-0038
Reference: [19] Jónsson, B.: Topics in Universal Algebra.Lecture Notes in Mathematics 250. Springer, Berlin (1972). Zbl 0225.08001, MR 0345895, 10.1007/bfb0058648
Reference: [20] Konieczny, J.: Green's relations and regularity in centralizers of permutations.Glasg. Math. J. 41 (1999), 45-57. Zbl 0924.20049, MR 1689659, 10.1017/s0017089599970301
Reference: [21] Konieczny, J.: Second centralizers of partial transformations.Czech. Math. J. 51 (2001), 873-888. Zbl 1003.20053, MR 1864048, 10.1023/a:1013729316147
Reference: [22] Konieczny, J.: Centralizers in the semigroup of injective transformations on an infinite set.Bull. Aust. Math. Soc. 82 (2010), 305-321. Zbl 1205.20063, MR 2685154, 10.1017/s0004972710000304
Reference: [23] Konieczny, J.: Infinite injective transformations whose centralizers have simple structure.Cent. Eur. J. Math. 9 (2011), 23-35. Zbl 1214.20057, MR 2753879, 10.2478/s11533-010-0086-4
Reference: [24] Novotný, M., Kopeček, O., Chvalina, J.: Homomorphic Transformations: Why and Possible Ways to How.Masaryk University, Brno (2012). 10.5817/cz.muni.m210-5831-2012
Reference: [25] Pitkethly, J., Davey, B.: Dualisability. Unary Algebras and Beyond.Advances in Mathematics 9. Springer, New York (2005). Zbl 1085.08001, MR 2161626, 10.1007/0-387-27570-3
Reference: [26] Popov, B. V., Kovaleva, O. V.: On a characterization of monounary algebras by their endomorphism semigroups.Semigroup Forum 73 (2006), 444-456. Zbl 1115.08005, MR 2279911, 10.1007/s00233-006-0635-0
Reference: [27] Pozdnyakova, I. V.: Semigroups of endomorphisms of some infinite monounary algebras.Mat. Metody Fiz.-Mekh. Polya 55 Russian (2012), 29-38 translated in J. Math. Sci. 190 658-668. Zbl 1274.08023, MR 3012027, 10.1007/s10958-013-1278-9
.

Files

Files Size Format View
MathBohem_145-2020-4_5.pdf 314.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo