Previous |  Up |  Next

Article

Title: Covariantization of quantized calculi over quantum groups (English)
Author: Akrami, Seyed Ebrahim
Author: Farzi, Shervin
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 4
Year: 2020
Pages: 415-433
Summary lang: English
.
Category: math
.
Summary: We introduce a method for construction of a covariant differential calculus over a Hopf algebra $A$ from a quantized calculus $da=[D,a]$, $a\in A$, where $D$ is a candidate for a Dirac operator for $A$. We recover the method of construction of a bicovariant differential calculus given by T. Brzeziński and S. Majid created from a central element of the dual Hopf algebra $A^\circ $. We apply this method to the Dirac operator for the quantum $\rm SL(2)$ given by S. Majid. We find that the differential calculus obtained by our method is the standard bicovariant 4D-calculus. We also apply this method to the Dirac operator for the quantum $\rm SL(2)$ given by P. N. Bibikov and P. P. Kulish and show that the resulted differential calculus is $8$-dimensional. (English)
Keyword: Hopf algebra
Keyword: quantum group
Keyword: covariant first order differential calculus
Keyword: quantized calculus
Keyword: Dirac operator
MSC: 58B32
MSC: 81Q30
idZBL: 07286022
idMR: MR4221843
DOI: 10.21136/MB.2019.0142-18
.
Date available: 2020-11-18T09:57:50Z
Last updated: 2021-04-19
Stable URL: http://hdl.handle.net/10338.dmlcz/148433
.
Reference: [1] Bibikov, P. N., Kulish, P. P.: Dirac operators on the quantum group ${\rm SU}(2)$ and the quantum sphere.J. Math. Sci., New York 100 (1997), 2039-2050. Zbl 0954.58004, MR 1627837, 10.1007/BF02675726
Reference: [2] Brzeziński, T., Majid, S.: A class of bicovariant differential calculi on Hopf algebras.Lett. Math. Phys. 26 (1992), 67-78. Zbl 0776.58005, MR 1193627, 10.1007/BF00420519
Reference: [3] Connes, A.: Noncommutative Geometry.Academic Press, San Diego (1994). Zbl 0818.46076, MR 1303779
Reference: [4] Klimyk, A., Schmüdgen, K.: Quantum Groups and Their Representations.Texts and Monographs in Physics. Springer, Berlin (1997). Zbl 0891.17010, MR 1492989, 10.1007/978-3-642-60896-4
Reference: [5] Majid, S.: Foundations of Quantum Group Theory.Cambridge Univ. Press, Cambridge (1995). Zbl 0857.17009, MR 1381692, 10.1017/CBO9780511613104
Reference: [6] Majid, S.: Riemannian geometry of quantum groups and finite groups with nonuniversal differentials.Commun. Math. Phys. 225 (2002), 131-170. Zbl 0999.58004, MR 1877313, 10.1007/s002201000564
Reference: [7] Woronowicz, S. L.: Differential calculus on compact matrix pseudogroups (quantum groups).Commun. Math. Phys. 122 (1989), 125-170. Zbl 0751.58042, MR 0994499, 10.1007/BF01221411
.

Files

Files Size Format View
MathBohem_145-2020-4_6.pdf 346.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo