Previous |  Up |  Next

Article

Title: Structure of geodesics in weakly symmetric Finsler metrics on H-type groups (English)
Author: Dušek, Zdeněk
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 5
Year: 2020
Pages: 265-275
Summary lang: English
.
Category: math
.
Summary: Structure of geodesic graphs in special families of invariant weakly symmetric Finsler metrics on modified H-type groups is investigated. Geodesic graphs on modified H-type groups with the center of dimension $1$ or $2$ are constructed. The new patterns of algebraic complexity of geodesic graphs are observed. (English)
Keyword: Finsler space
Keyword: weakly symmetric space
Keyword: g.o. space
Keyword: homogeneous geodesic
Keyword: geodesic graph
MSC: 53C22
MSC: 53C30
MSC: 53C60
idZBL: Zbl 07285964
idMR: MR4188741
DOI: 10.5817/AM2020-5-265
.
Date available: 2020-11-20T13:54:43Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148437
.
Reference: [1] Alekseevsky, D., Arvanitoyeorgos, A.: Riemannian flag manifolds with homogeneous geodesics.Trans. Amer. Math. Soc. 359 (2007), 3769–3789. Zbl 1148.53038, MR 2302514, 10.1090/S0002-9947-07-04277-8
Reference: [2] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry.Springer Science+Business Media, New York, 2000. Zbl 0954.53001, MR 1747675
Reference: [3] Berndt, J., Kowalski, O., Vanhecke, L.: Geodesics in weakly symmetric spaces.Ann. Glob. Anal. Geom. 15 (1997), 153–156. MR 1448722, 10.1023/A:1006565909527
Reference: [4] Berndt, J., Tricerri, F., Vanhecke, L.: Generalized Heisenberg groups and Damek-Ricci harmonic spaces.Lecture Notes in Math., vol. 1598, Springer-Verlag, Berlin-Heidelberg-New York, 1995. MR 1340192
Reference: [5] Deng, S.: Homogeneous Finsler Spaces.Springer Science+Business Media, New York, 2012. MR 2962626
Reference: [6] Dušek, Z.: Explicit geodesic graphs on some H-type groups.Rend. Circ. Mat. Palermo, Serie II, Suppl. 69 (2002), 77–88. MR 1972426
Reference: [7] Dušek, Z.: Structure of geodesics in the flag manifold ${\rm SO}(7)/{\rm U}(3)$.Differential Geometry and its Applications, Proc. 10th Int. Conf. (Kowalski, O., Krupka, D., Krupková, O., Slovák, J., eds.), World Scientific, 2008, pp. 89–98. MR 2463742
Reference: [8] Dušek, Z.: Homogeneous geodesics and g.o. manifolds.Note Mat. 38 (2018), 1–15. MR 3809649
Reference: [9] Dušek, Z.: Geodesic graphs in Randers g.o. spaces.Comment. Math. Univ. Carolin. 61 (2) (2020), 195–211. MR 4143705
Reference: [10] Dušek, Z., Kowalski, O.: Geodesic graphs on the $13$-dimensional group of Heisenberg type.Math. Nachr. 254–255 (2003), 87–96. MR 1983957, 10.1002/mana.200310054
Reference: [11] Gordon, C.S., Nikonorov, Yu.G.: Geodesic orbit Riemannian structures on $\mathbb{R}^n$.J. Geom. Phys. 134 (2018), 235–243. MR 3886938, 10.1016/j.geomphys.2018.08.018
Reference: [12] Kowalski, O., Nikčević, S.: On geodesic graphs of Riemannian g.o. spaces.Arch. Math. 73 (1999), 223–234, Appendix: Arch. Math. 79 (2002), 158–160. MR 1924152, 10.1007/s000130050032
Reference: [13] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics.Boll. Un. Math. Ital. B(7) 5 (1991), 189–246. Zbl 0731.53046, MR 1110676
Reference: [14] Latifi, D.: Homogeneous geodesics in homogeneous Finsler spaces.J. Geom. Phys. 57 (2007), 1421–1433. MR 2289656, 10.1016/j.geomphys.2006.11.004
Reference: [15] Lauret, J.: Modified H-type groups and symmetric-like Riemannian spaces.Differential Geom. Appl. 10 (1999), 121–143. MR 1669469, 10.1016/S0926-2245(99)00002-9
Reference: [17] Riehm, C.: Explicit spin representations and Lie algebras of Heisenberg type.J. London Math. Soc. (2) 32 (1985), 265–271. MR 0734990
Reference: [18] Szenthe, J.: Sur la connection naturelle à torsion nulle.Acta Sci. Math. (Szeged) 38 (1976), 383–398. MR 0431042
Reference: [19] Yan, Z., Deng, S.: Finsler spaces whose geodesics are orbits.Differential Geom. Appl. 36 (2014), 1–23. MR 3262894, 10.1016/j.difgeo.2014.06.006
.

Files

Files Size Format View
ArchMathRetro_056-2020-5_2.pdf 514.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo