Title:
|
Structure of geodesics in weakly symmetric Finsler metrics on H-type groups (English) |
Author:
|
Dušek, Zdeněk |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
56 |
Issue:
|
5 |
Year:
|
2020 |
Pages:
|
265-275 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Structure of geodesic graphs in special families of invariant weakly symmetric Finsler metrics on modified H-type groups is investigated. Geodesic graphs on modified H-type groups with the center of dimension $1$ or $2$ are constructed. The new patterns of algebraic complexity of geodesic graphs are observed. (English) |
Keyword:
|
Finsler space |
Keyword:
|
weakly symmetric space |
Keyword:
|
g.o. space |
Keyword:
|
homogeneous geodesic |
Keyword:
|
geodesic graph |
MSC:
|
53C22 |
MSC:
|
53C30 |
MSC:
|
53C60 |
idZBL:
|
Zbl 07285964 |
idMR:
|
MR4188741 |
DOI:
|
10.5817/AM2020-5-265 |
. |
Date available:
|
2020-11-20T13:54:43Z |
Last updated:
|
2021-02-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148437 |
. |
Reference:
|
[1] Alekseevsky, D., Arvanitoyeorgos, A.: Riemannian flag manifolds with homogeneous geodesics.Trans. Amer. Math. Soc. 359 (2007), 3769–3789. Zbl 1148.53038, MR 2302514, 10.1090/S0002-9947-07-04277-8 |
Reference:
|
[2] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry.Springer Science+Business Media, New York, 2000. Zbl 0954.53001, MR 1747675 |
Reference:
|
[3] Berndt, J., Kowalski, O., Vanhecke, L.: Geodesics in weakly symmetric spaces.Ann. Glob. Anal. Geom. 15 (1997), 153–156. MR 1448722, 10.1023/A:1006565909527 |
Reference:
|
[4] Berndt, J., Tricerri, F., Vanhecke, L.: Generalized Heisenberg groups and Damek-Ricci harmonic spaces.Lecture Notes in Math., vol. 1598, Springer-Verlag, Berlin-Heidelberg-New York, 1995. MR 1340192 |
Reference:
|
[5] Deng, S.: Homogeneous Finsler Spaces.Springer Science+Business Media, New York, 2012. MR 2962626 |
Reference:
|
[6] Dušek, Z.: Explicit geodesic graphs on some H-type groups.Rend. Circ. Mat. Palermo, Serie II, Suppl. 69 (2002), 77–88. MR 1972426 |
Reference:
|
[7] Dušek, Z.: Structure of geodesics in the flag manifold ${\rm SO}(7)/{\rm U}(3)$.Differential Geometry and its Applications, Proc. 10th Int. Conf. (Kowalski, O., Krupka, D., Krupková, O., Slovák, J., eds.), World Scientific, 2008, pp. 89–98. MR 2463742 |
Reference:
|
[8] Dušek, Z.: Homogeneous geodesics and g.o. manifolds.Note Mat. 38 (2018), 1–15. MR 3809649 |
Reference:
|
[9] Dušek, Z.: Geodesic graphs in Randers g.o. spaces.Comment. Math. Univ. Carolin. 61 (2) (2020), 195–211. MR 4143705 |
Reference:
|
[10] Dušek, Z., Kowalski, O.: Geodesic graphs on the $13$-dimensional group of Heisenberg type.Math. Nachr. 254–255 (2003), 87–96. MR 1983957, 10.1002/mana.200310054 |
Reference:
|
[11] Gordon, C.S., Nikonorov, Yu.G.: Geodesic orbit Riemannian structures on $\mathbb{R}^n$.J. Geom. Phys. 134 (2018), 235–243. MR 3886938, 10.1016/j.geomphys.2018.08.018 |
Reference:
|
[12] Kowalski, O., Nikčević, S.: On geodesic graphs of Riemannian g.o. spaces.Arch. Math. 73 (1999), 223–234, Appendix: Arch. Math. 79 (2002), 158–160. MR 1924152, 10.1007/s000130050032 |
Reference:
|
[13] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics.Boll. Un. Math. Ital. B(7) 5 (1991), 189–246. Zbl 0731.53046, MR 1110676 |
Reference:
|
[14] Latifi, D.: Homogeneous geodesics in homogeneous Finsler spaces.J. Geom. Phys. 57 (2007), 1421–1433. MR 2289656, 10.1016/j.geomphys.2006.11.004 |
Reference:
|
[15] Lauret, J.: Modified H-type groups and symmetric-like Riemannian spaces.Differential Geom. Appl. 10 (1999), 121–143. MR 1669469, 10.1016/S0926-2245(99)00002-9 |
Reference:
|
[17] Riehm, C.: Explicit spin representations and Lie algebras of Heisenberg type.J. London Math. Soc. (2) 32 (1985), 265–271. MR 0734990 |
Reference:
|
[18] Szenthe, J.: Sur la connection naturelle à torsion nulle.Acta Sci. Math. (Szeged) 38 (1976), 383–398. MR 0431042 |
Reference:
|
[19] Yan, Z., Deng, S.: Finsler spaces whose geodesics are orbits.Differential Geom. Appl. 36 (2014), 1–23. MR 3262894, 10.1016/j.difgeo.2014.06.006 |
. |