Previous |  Up |  Next

Article

Title: On variants of Arnold conjecture (English)
Author: Golovko, Roman
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 5
Year: 2020
Pages: 277-286
Summary lang: English
.
Category: math
.
Summary: In this note we discuss the collection of statements known as Arnold conjecture for Hamiltonian diffeomorphisms of closed symplectic manifolds. We provide an overview of the homological, stable and strong versions of Arnold conjecture for non-degenerate Hamiltonian systems, a few versions of Arnold conjecture for possibly degenerate Hamiltonian systems, the degenerate version of Arnold conjecture for Hamiltonian homeomorphisms and Sandon’s version of Arnold conjecture for contactomorphisms. (English)
Keyword: Arnold conjecture
Keyword: fixed points
Keyword: Hamiltonian symplectomorphisms
MSC: 53D12
MSC: 53D42
idZBL: Zbl 07285965
idMR: MR4188742
DOI: 10.5817/AM2020-5-277
.
Date available: 2020-11-20T13:56:59Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148438
.
Reference: [1] Abbondandolo, A.: Morse theory for Hamiltonian systems.Chapman $\&$ Hall/CRC, Res. Notes Math., Boca Raton FL, 2001. MR 1824111
Reference: [2] Arnold, V.I.: Mathematical Methods of Classical Mechanics.Grad. Texts in Math., vol. 60, Springer-Verlag, New York, 1989. MR 0997295
Reference: [3] Barraud, J.-F.: A Floer fundamental group.Ann. Sci. École Norm. Sup. (4) 51 (3) (2018), 773–809. MR 3831037, 10.24033/asens.2366
Reference: [4] Buhovsky, L., Humilière, V., Seyfaddini, S.: An Arnold-type principle for non-smooth objects.preprint 2019, available at arXiv:1909.07081.
Reference: [5] Buhovsky, L., Humilière, V., Seyfaddini, S.: A $C^0$ counterexample to the Arnold conjecture.Invent. Math. 213 (2018), 759–809. MR 3827210, 10.1007/s00222-018-0797-x
Reference: [6] Conley, C., Zehnder, E.: The Birkhoff–Lewis fixed point theorem and a conjecture of V.I. Arnold.Invent. Math. 73 (1983), 33–49. MR 0707347, 10.1007/BF01393824
Reference: [7] Damian, M.: On the stable Morse number of a closed manifold.Bull. London Math. Soc. 34 (2002), 420–430. MR 1897421, 10.1112/S0024609301008955
Reference: [8] Dimitroglou Rizell, G., Golovko, R.: The number of Hamiltonian fixed points on symplectically aspherical manifolds.Proceedings of the Geometry-Topology Conference 2016, Gökova Geometry-Topology Conference (GGT), Gökova, 2017, pp. 138–150. MR 3676086
Reference: [9] Eliashberg, Y.: Estimates on the number of fixed points of area preserving transformations.Syktyvkar University, preprint 1979.
Reference: [10] Filippenko, B., Wehrheim, K.: A polyfold proof of the Arnold conjecture.preprint 2018, available at arXiv:1810.06180. MR 3576532
Reference: [11] Fish, J., Hofer, H.: Lectures on Polyfolds and Symplectic Field Theory.preprint 2018, available at arXiv:1808.07147. MR 3676594
Reference: [12] Floer, A.: A relative Morse index for the symplectic action.Comm. Pure Appl. Math. 41 (1988), 393–407. MR 0933228, 10.1002/cpa.3160410402
Reference: [13] Floer, A.: Morse theory for Lagrangian intersections.J. Differential Geom. 28 (1988), 513–547. MR 0965228, 10.4310/jdg/1214442477
Reference: [14] Floer, A.: The unregularized gradient flow of the symplectic action.Comm. Pure Appl. Math. 41 (1988), 775–813. MR 0948771, 10.1002/cpa.3160410603
Reference: [15] Floer, A.: Symplectic fixed points and holomorphic spheres.Comm. Math. Phys. 120 (1989), 575–611. MR 0987770, 10.1007/BF01260388
Reference: [16] Floer, A.: Witten’s complex and infinite dimensional Morse theory.. Differential Geom. 30 (1989), 207–221. MR 1001276, 10.4310/jdg/1214443291
Reference: [17] Franks, J.: Rotation vectors and fixed points of area preserving surface diffeomorphisms.Trans. Amer. Math. Soc. 348 (7) (1996), 2637–2662. MR 1325916, 10.1090/S0002-9947-96-01502-4
Reference: [18] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory: anomaly and obstruction. Part I.AMS/IP Studies in Advanced Mathematics, American Mathematical Society, Providence, RI; Internationl Press, Somerville, MA, 2009. MR 2553465
Reference: [19] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory: anomaly and obstruction. Part II.AMS/IP Studies in Advanced Mathematics, vol. 46, American Mathematical Society, Providence, RI; Internationl Press, Somerville, MA, 2009. MR 2553465
Reference: [20] Fukaya, K., Ono, K.: Arnold conjecture and Gromov-Witten invariant.Topology 38 (5) (1999), 933–1048. MR 1688434, 10.1016/S0040-9383(98)00042-1
Reference: [21] Fukaya, K., Ono, K.: Arnold conjecture and Gromov-Witten invariant for general symplectic manifolds.The Arnoldfest. Proceedings of a conference in honour of V. I. Arnold for his 60th birthday, Toronto, Canada, June 15-21, 1997 (al., E. Bierstone (ed.) et, ed.), vol. 24, 1999. MR 1733575
Reference: [22] Gompf, R.E.: A new construction of symplectic manifolds.Ann. of Math. 2 (1995), 527–595. MR 1356781, 10.2307/2118554
Reference: [23] Granja, G., Karshon, Y., Pabiniak, M., Sandon, S.: Givental’s non-linear Maslov index on lens spaces.preprint 2017, available at arXiv:1704.05827.
Reference: [24] Gromov, M.: Pseudoholomorphic curves in symplectic manifolds.Invent. Math. 82 (2) (1985), 307–347. MR 0809718, 10.1007/BF01388806
Reference: [25] Hofer, H., Wysocki, K., Zehnder, E.: Polyfold and Fredholm Theory.preprint 2017, available at arXiv:1707.08941v1.
Reference: [26] Hofer, H., Zehnder, E.: Symplectic invariants and Hamiltonian dynamics.Birkhäuser Verlag, Basel, xiv+341. MR 2797558
Reference: [27] Le Calvez, P.: Periodic orbits of Hamiltonian homeomorphisms of surfaces.Duke Math. J. 133 (1) (2006), 125–184. MR 2219272, 10.1215/S0012-7094-06-13315-X
Reference: [28] Liu, G., Tian, G.: Floer homology and Arnold conjecture.J. Differential Geom. 49 (1) (1998), 1–74. MR 1642105, 10.4310/jdg/1214460936
Reference: [29] Matsumoto, S.: Arnold conjecture for surface homeomorphisms.Proceedings of the French-Japanese Conference Hyperspace Topologies and Applications, (La Bussiere, 1997), vol. 104, 2000, pp. 191–214. MR 1780985
Reference: [30] Ono, K., Pajitnov, A.: On the fixed points of a Hamiltonian diffeomorphism in presence of fundamental group.Essays in Mathematics and its Applications: In Honor of Vladimir Arnold, Springer, 2016, pp. 199–229. MR 3526921
Reference: [31] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications.preprint 2002, available at arXiv:0211159. Zbl 1130.53001, MR 4105148
Reference: [32] Piunikhin, S., Salamon, D., Schwarz, M.: Symplectic Floer-Donaldson theory and quantum cohomology.Contact and symplectic geometry (Cambridge, 1994), Publ. Newton Inst., Cambridge Univ. Press, 1996. MR 1432464
Reference: [33] Ruan, Y.: Virtual neighborhoods and pseudo-holomorphic curves.Proceedings of 6th Gokova Geometry-Topology Conference, vol. 23, Gokova, 1999. MR 1701645
Reference: [34] Rudyak, Yu.B., Oprea, J.: On the Lusternik-Schnirelmann category of symplectic manifolds and the Arnold conjecture.Math. Z. 230 (4) (1999), 673–678. MR 1686579, 10.1007/PL00004709
Reference: [35] Salamon, D.: Lectures on Floer homology.Symplectic Topology, I.A.S./Park City Math. Series. Am. Math. Soc., Providence.
Reference: [36] Salamon, D.A., Zehnder, E.: Morse theory for periodic solutions of Hamiltonian systems and the Maslov index.Comm. Pure Appl. Math. 45 (1992), 1303–1360. MR 1181727, 10.1002/cpa.3160451004
Reference: [37] Sandon, S.: On iterated translated points for contactomorphisms of $\mathbb{R}^{2n+1}$ and $\mathbb{R}^{2n} \times S^1$.Internat. J. Math. 23 (2) (2012), 14 pp. MR 2890476
Reference: [38] Sandon, S.: A Morse estimate for translated points of contactomorphisms of spheres and projective spaces.Geom. Dedicata 165 (2013), 95–110. MR 3079344, 10.1007/s10711-012-9741-1
Reference: [39] Schwarz, M.: Morse homology.Progress in Math., vol. 111, Birkhäuser, 1993. MR 1239174
Reference: [40] Smale, S.: On the structure of manifolds.Amer. J. Math. 84 (1962), 387–399. MR 0153022, 10.2307/2372978
Reference: [41] Tervil, B.: Translated points for prequantization spaces over monotone toric manifolds.preprint 2018, available at arXiv:1811.09984.
.

Files

Files Size Format View
ArchMathRetro_056-2020-5_3.pdf 531.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo