Previous |  Up |  Next

Article

Title: Remark on bilinear operations on tensor fields (English)
Author: Slovák, Jan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 5
Year: 2020
Pages: 301-305
Summary lang: English
.
Category: math
.
Summary: This short note completes the results of [3] by removing the locality assumption on the operators. After providing a quick survey on (infinitesimally) natural operations, we show that all the bilinear operators classified in [3] can be characterized in a completely algebraic way, even without any continuity assumption on the operations. (English)
Keyword: natural operator
Keyword: tensor field
Keyword: natural functional
Keyword: Lie derivative
MSC: 53A32
MSC: 53A55
MSC: 58A20
idZBL: Zbl 07285967
idMR: MR4188744
DOI: 10.5817/AM2020-5-301
.
Date available: 2020-11-20T13:58:23Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148440
.
Reference: [1] Čap, Andreas, Slovák, Jan: Infinitesimally natural operators are natural.Differential Geom. Appl. 2 (1) (1992), 45–55. MR 1244455, 10.1016/0926-2245(92)90008-B
Reference: [2] Čap, Andreas, Slovák, Jan: On multilinear operators commuting with Lie derivatives.Ann. Global Anal. Geom. 13 (3) (1995), 251–279. MR 1344482, 10.1007/BF00773659
Reference: [3] Janyška, Josef: Remarks on natural differential operators with tensor fields.Arch. Math. (Brno) 55 (2019), 289–308. MR 4057926, 10.5817/AM2019-5-289
Reference: [4] Kolář, Ivan, Michor, Peter W., Slovák, Jan: Natural operations in Differential Geometry.Springer, 1993, vi+434 pp. MR 1202431
.

Files

Files Size Format View
ArchMathRetro_056-2020-5_5.pdf 438.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo