Title:
|
Modular operads with connected sum and Barannikov’s theory (English) |
Author:
|
Peksová, Lada |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
56 |
Issue:
|
5 |
Year:
|
2020 |
Pages:
|
287-300 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We introduce the connected sum for modular operads. This gives us a graded commutative associative product, and together with the BV bracket and the BV Laplacian obtained from the operadic composition and self-composition, we construct the full Batalin-Vilkovisky algebra. The BV Laplacian is then used as a perturbation of the special deformation retract of formal functions to construct a minimal model and compute an effective action. (English) |
Keyword:
|
modular operads |
Keyword:
|
connected sum |
Keyword:
|
Batalin-Vilkovisky algebra |
Keyword:
|
homological perturbation lemma |
MSC:
|
18D50 |
MSC:
|
81T99 |
idZBL:
|
Zbl 07285966 |
idMR:
|
MR4188743 |
DOI:
|
10.5817/AM2020-5-287 |
. |
Date available:
|
2020-11-20T13:57:47Z |
Last updated:
|
2021-02-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148439 |
. |
Reference:
|
[1] Barannikov, S.: Modular operads and Batalin-Vilkovisky geometry.Int. Math. Res. Not. IMRN 19 (2007), 31 pp., Art. ID rnm075. MR 2359547 |
Reference:
|
[2] Chuang, J., Lazarev, A.: Abstract Hodge decomposition and minimal models for cyclic algebras.Lett. Math. Phys. 89 (1) (2009), 33–49. MR 2520178, 10.1007/s11005-009-0314-7 |
Reference:
|
[3] Doubek, M., Jurčo, B., Münster, K.: Modular operads and the quantum open-closed homotopy algebra.J. High Energy Phys. 158 (12) (2015), 54 pp., Article ID 158. MR 3464644 |
Reference:
|
[4] Doubek, M., Jurčo, B., Peksová, L., Pulmann, J.: Quantum homotopy algebras.in preparation. |
Reference:
|
[5] Doubek, M., Jurčo, B., Pulmann, J.: Quantum $L_\infty $ algebras and the homological perturbation lemma.Comm. Math. Phys. 367 (1) (2019), 215–240. MR 3933409, 10.1007/s00220-019-03375-x |
Reference:
|
[6] Eilenberg, S., MacLane, S.: On the groups $H(\Pi , n)$. I.Ann. of Math. (2) 58 (1) (1953), 55–106. MR 0056295 |
Reference:
|
[7] Markl, M.: Loop homotopy algebras in closed string field theory.Comm. Math. Phys. 221 (2) (2001), 367–384. MR 1845329, 10.1007/PL00005575 |
Reference:
|
[8] Schwarz, A.: Geometry of Batalin-Vilkovisky quantization.Comm. Math. Phys. 155 (2) (1993), 249–260. Zbl 0786.58017, MR 1230027, 10.1007/BF02097392 |
Reference:
|
[9] Zwiebach, B.: Oriented open-closed string theory revisited.Ann. Physics 267 (2) (1998), 193–248. MR 1638333, 10.1006/aphy.1998.5803 |
. |