Previous |  Up |  Next

Article

Title: Fixed point approximation under Mann iteration beyond Ishikawa (English)
Author: Hester, Anthony
Author: Morales, Claudio H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 3
Year: 2020
Pages: 265-275
Summary lang: English
.
Category: math
.
Summary: Consider the Mann iteration $x_{n+1} = ( 1 - \alpha_n ) x_n + \alpha_n Tx_n$ for a nonexpansive mapping $T\colon K \to K$ defined on some subset $K$ of the normed space $X$. We present an innovative proof of the Ishikawa almost fixed point principle for nonexpansive mapping that reveals deeper aspects of the behavior of the process. This fact allows us, among other results, to derive convergence of the process under the assumption of existence of an accumulation point of $\{ x_n \}$. (English)
Keyword: Mann iteration
Keyword: fixed point
Keyword: nonexpansive mapping
MSC: 47H10
idZBL: Zbl 07286005
idMR: MR4186108
DOI: 10.14712/1213-7243.2020.031
.
Date available: 2020-11-27T07:34:33Z
Last updated: 2022-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148466
.
Reference: [1] Bin D., Buthinah A., Khamsi M. A.: Mann iteration process for monotone nonexpansive mappings.Fixed Point Theory Appl. (2015), 2015:177, 7 pages. MR 3402821
Reference: [2] Borwein J., Reich S., Shafrir I.: Krasnosel'ski–Mann iterations in normed spaces.Canad. Math. Bull. 35 (1992), no. 1, 21–28. MR 1157459, 10.4153/CMB-1992-003-0
Reference: [3] Browder F. E., Petryshyn W. V.: The solution by iteration of nonlinear functional equations in Banach spaces.Bull. Amer. Math. Soc. 72 (1966), 571–575. MR 0190745, 10.1090/S0002-9904-1966-11544-6
Reference: [4] Chidume C. E.: On the approximation of fixed points of nonexpansive mappings.Houston J. Math. 7 (1981), no. 3, 345–355. MR 0640975
Reference: [5] Dotson W. G., Jr.: An iterative process for nonlinear monotonic nonexpansive operators in Hilbert space.Math. Comp. 32 (1978), no. 141, 223–225. MR 0470779, 10.1090/S0025-5718-1978-0470779-8
Reference: [6] Edelstein M.: On nonexpansive mappings.Proc. Amer. Math. Soc. 15 (1964), 689–695. MR 0165498, 10.1090/S0002-9939-1964-0165498-3
Reference: [7] Ishikawa S.: Fixed points and iteration of a nonexpansive mapping in a Banach space.Proc. Amer. Math. Soc. 59 (1976), no. 1, 65–71. MR 0412909, 10.1090/S0002-9939-1976-0412909-X
Reference: [8] Krasnosel'skiĭ M. A.: Two remarks on the method of successive approximations.Uspehi Mat. Nauk (N.S.) 10 (1955), no. 1(63), 123–127 (Russian). MR 0068119
Reference: [9] Mann W. R.: Mean value methods in iteration.Proc. Amer. Math. Soc. 4 (1953), 506–510. MR 0054846, 10.1090/S0002-9939-1953-0054846-3
Reference: [10] Opial Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings.Bull. Amer. Math. Soc. 73 (1967), 591–597. MR 0211301, 10.1090/S0002-9904-1967-11761-0
Reference: [11] Outlaw C., Groetsch C. W.: Averaging iteration in a Banach space.Bull. Amer. Math. Soc. 75 (1969), 430–432. MR 0239478, 10.1090/S0002-9904-1969-12207-X
Reference: [12] Reich S.: Weak convergence theorems for nonexpansive mappings in Banach spaces.J. Math. Anal. Appl. 67 (1979), no. 2, 274–276. MR 0528688, 10.1016/0022-247X(79)90024-6
Reference: [13] Reich S., Shafrir I.: On the method of successive approximations for nonexpansive mappings.Nonlinear and Convex Analysis, Santa Barbara, 1985, Lecture Notes in Pure and Appl. Math., 107, Dekker, New York, 1987, 193–201. MR 0892792
Reference: [14] Schaefer H.: Über die Methode sukzessiver Approximationen.Jber. Deutsch. Math.-Verein. 59 (1957), Abt. 1, 131–140 (German). MR 0084116
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-3_1.pdf 269.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo