Title:
|
Fixed point approximation under Mann iteration beyond Ishikawa (English) |
Author:
|
Hester, Anthony |
Author:
|
Morales, Claudio H. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
61 |
Issue:
|
3 |
Year:
|
2020 |
Pages:
|
265-275 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Consider the Mann iteration $x_{n+1} = ( 1 - \alpha_n ) x_n + \alpha_n Tx_n$ for a nonexpansive mapping $T\colon K \to K$ defined on some subset $K$ of the normed space $X$. We present an innovative proof of the Ishikawa almost fixed point principle for nonexpansive mapping that reveals deeper aspects of the behavior of the process. This fact allows us, among other results, to derive convergence of the process under the assumption of existence of an accumulation point of $\{ x_n \}$. (English) |
Keyword:
|
Mann iteration |
Keyword:
|
fixed point |
Keyword:
|
nonexpansive mapping |
MSC:
|
47H10 |
idZBL:
|
Zbl 07286005 |
idMR:
|
MR4186108 |
DOI:
|
10.14712/1213-7243.2020.031 |
. |
Date available:
|
2020-11-27T07:34:33Z |
Last updated:
|
2022-10-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148466 |
. |
Reference:
|
[1] Bin D., Buthinah A., Khamsi M. A.: Mann iteration process for monotone nonexpansive mappings.Fixed Point Theory Appl. (2015), 2015:177, 7 pages. MR 3402821 |
Reference:
|
[2] Borwein J., Reich S., Shafrir I.: Krasnosel'ski–Mann iterations in normed spaces.Canad. Math. Bull. 35 (1992), no. 1, 21–28. MR 1157459, 10.4153/CMB-1992-003-0 |
Reference:
|
[3] Browder F. E., Petryshyn W. V.: The solution by iteration of nonlinear functional equations in Banach spaces.Bull. Amer. Math. Soc. 72 (1966), 571–575. MR 0190745, 10.1090/S0002-9904-1966-11544-6 |
Reference:
|
[4] Chidume C. E.: On the approximation of fixed points of nonexpansive mappings.Houston J. Math. 7 (1981), no. 3, 345–355. MR 0640975 |
Reference:
|
[5] Dotson W. G., Jr.: An iterative process for nonlinear monotonic nonexpansive operators in Hilbert space.Math. Comp. 32 (1978), no. 141, 223–225. MR 0470779, 10.1090/S0025-5718-1978-0470779-8 |
Reference:
|
[6] Edelstein M.: On nonexpansive mappings.Proc. Amer. Math. Soc. 15 (1964), 689–695. MR 0165498, 10.1090/S0002-9939-1964-0165498-3 |
Reference:
|
[7] Ishikawa S.: Fixed points and iteration of a nonexpansive mapping in a Banach space.Proc. Amer. Math. Soc. 59 (1976), no. 1, 65–71. MR 0412909, 10.1090/S0002-9939-1976-0412909-X |
Reference:
|
[8] Krasnosel'skiĭ M. A.: Two remarks on the method of successive approximations.Uspehi Mat. Nauk (N.S.) 10 (1955), no. 1(63), 123–127 (Russian). MR 0068119 |
Reference:
|
[9] Mann W. R.: Mean value methods in iteration.Proc. Amer. Math. Soc. 4 (1953), 506–510. MR 0054846, 10.1090/S0002-9939-1953-0054846-3 |
Reference:
|
[10] Opial Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings.Bull. Amer. Math. Soc. 73 (1967), 591–597. MR 0211301, 10.1090/S0002-9904-1967-11761-0 |
Reference:
|
[11] Outlaw C., Groetsch C. W.: Averaging iteration in a Banach space.Bull. Amer. Math. Soc. 75 (1969), 430–432. MR 0239478, 10.1090/S0002-9904-1969-12207-X |
Reference:
|
[12] Reich S.: Weak convergence theorems for nonexpansive mappings in Banach spaces.J. Math. Anal. Appl. 67 (1979), no. 2, 274–276. MR 0528688, 10.1016/0022-247X(79)90024-6 |
Reference:
|
[13] Reich S., Shafrir I.: On the method of successive approximations for nonexpansive mappings.Nonlinear and Convex Analysis, Santa Barbara, 1985, Lecture Notes in Pure and Appl. Math., 107, Dekker, New York, 1987, 193–201. MR 0892792 |
Reference:
|
[14] Schaefer H.: Über die Methode sukzessiver Approximationen.Jber. Deutsch. Math.-Verein. 59 (1957), Abt. 1, 131–140 (German). MR 0084116 |
. |