Previous |  Up |  Next

Article

Title: Asymptotic properties of a $\varphi$-Laplacian and Rayleigh quotient (English)
Author: Arriagada, Waldo
Author: Huentutripay, Jorge
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 3
Year: 2020
Pages: 345-362
Summary lang: English
.
Category: math
.
Summary: In this paper we consider the $\varphi\,$-Laplacian problem with Dirichlet boundary condition, $$ -{\rm div}\Big(\varphi(|\nabla u|) \frac{\nabla u}{|\nabla u |}\Big)=\lambda g(\cdot) \varphi(u) \qquad\text{in } \Omega, \lambda\in{\mathbb{R}} \text{ and } u\vert_{\partial\Omega}=0. $$ The term $\varphi$ is a real odd and increasing homeomorphism, $g$ is a nonnegative function in $L^{\infty}(\Omega)$ and $\Omega\subseteq\mathbb{R}^N$ is a bounded domain. In these notes an analysis of the asymptotic behavior of sequences of eigenvalues of the differential equation is provided. We assume conditions which guarantee the existence of stationary solutions of the system. Under these rather stringent hypotheses we prove that any extremal is both a minimizer and an eigenfunction of the $\varphi$-Laplacian. It turns out that if, in addition, a suitable $\Delta_2$-condition holds then any number greater than or equal to the minimum of the Rayleigh quotient is an eigenvalue of the differential equation. (English)
Keyword: Orlicz--Sobolev space
Keyword: $\varphi$-Laplacian
Keyword: eigenvalue
Keyword: Rayleigh quotient
MSC: 35J60
MSC: 35P20
MSC: 35P30
idZBL: Zbl 07286009
idMR: MR4186112
DOI: 10.14712/1213-7243.2020.020
.
Date available: 2020-11-27T07:42:44Z
Last updated: 2022-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148471
.
Reference: [1] Adams R. A., Fournier J. J. F.: Sobolev Spaces.Pure and Applied Mathematics (Amsterdam), 140, Elsevier Academic Press, Amsterdam, 2003. Zbl 1098.46001, MR 2424078
Reference: [2] Arriagada W., Huentutripay J.: Blow-up rates of large solutions for a $\phi$-Laplacian problem with gradient term.Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 4, 669–689. MR 3233749
Reference: [3] Arriagada W., Huentutripay J.: Characterization of a homogeneous Orlicz space.Electron. J. Differential Equations 2017 (2017), Paper No. 49, 17 pages. MR 3625929
Reference: [4] Arriagada W., Huentutripay J.: Regularity, positivity and asymptotic vanishing of solutions of a $\phi$-Laplacian.An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 25 (2017), no. 3, 59–72. MR 3747154
Reference: [5] Brezis H.: Analyse fonctionnelle. Théorie et applications.Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983 (French). MR 0697382
Reference: [6] Diaz G., Letelier R.: Unbounded solutions of one-dimensional quasilinear elliptic equations.Appl. Anal. 48 (1993), no. 1–4, 173–203. MR 1278131, 10.1080/00036819308840157
Reference: [7] Donaldson T. K., Trudinger N. S.: Orlicz–Sobolev spaces and imbedding theorems.J. Functional Analysis 8 (1971), 52–75. MR 0301500, 10.1016/0022-1236(71)90018-8
Reference: [8] Drábek P., Manásevich R.: On the closed solution to some nonhomogeneous eigenvalue problems with $p$-Laplacian.Differential Integral Equations 12 (1999), no. 6, 773–788. MR 1728030
Reference: [9] Drábek P., Robinson S. B.: Resonance problems for the $p$-Laplacian.J. Funct. Anal. 169 (1999), no. 1, 189–200. MR 1726752, 10.1006/jfan.1999.3501
Reference: [10] Drábek P., Rother W.: Nonlinear eigenvalue problem for $p$-Laplacian in $\mathbb{R}^N$.Mathematische Nachrichten 173 (1995), no. 1, 131–139. MR 1336957, 10.1002/mana.19951730109
Reference: [11] Fan X., Zhang Q., Zhao D.: Eigenvalues of $p(x)$-Laplacian Dirichlet problem.J. Math. Anal. Appl. 302 (2005), no. 2, 306–317. MR 2107835, 10.1016/j.jmaa.2003.11.020
Reference: [12] Fukagai N., Ito M., Narukawa K.: Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on ${\mathbb{R}}^N$.Funkcial. Ekvac. 49 (2006), no. 2, 235–267. MR 2271234, 10.1619/fesi.49.235
Reference: [13] Garcia Azorero J. P., Peral Alonso I.: Existence and nonuniqueness for the $p$-Laplacian: nonlinear eigenvalues.Comm. Partial Differential Equations 12 (1987), no. 12, 1389–1403. MR 0912211
Reference: [14] García-Huidobro M., Le V. K., Manásevich R., Schmitt K.: On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz–Sobolev space setting.NoDEA Nonlinear Differential Equations Appl. 6 (1999), no. 2, 207–225. MR 1694787, 10.1007/s000300050073
Reference: [15] Gossez J.-P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients.Trans. Amer. Math. Soc. 190 (1974), 163–205. MR 0342854, 10.1090/S0002-9947-1974-0342854-2
Reference: [16] Gossez J.-P.: Orlicz–Sobolev spaces and nonlinear elliptic boundary value problems.Nonlinear Analysis, Function Spaces and Applications, Proc. Spring School, Horni Bradlo, 1978, Teubner, Leipzig, 1979, pages 59–94. MR 0578910
Reference: [17] Gossez J.-P., Manásevich R.: On a nonlinear eigenvalue problem in Orlicz–Sobolev spaces.Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 4, 891–909. MR 1926921
Reference: [18] Huentutripay J., Manásevich R.: Nonlinear eigenvalues for a quasilinear elliptic system in Orlicz–Sobolev spaces.J. Dynam. Differential Equations 18 (2006), no. 4, 901–921. MR 2263407, 10.1007/s10884-006-9049-7
Reference: [19] Krasnosel'skiĭ M. A., Rutic'kiĭ Ja. B.: Convex Functions and Orlicz Spaces.Noordhoff, Groningen, 1961.
Reference: [20] Lang S.: Real and Functional Analysis.Graduate Texts in Mathematics, 142, Springer, New York, 1993. Zbl 0831.46001, MR 1216137
Reference: [21] Lê A.: Eigenvalue problems for the $p$-Laplacian.Nonlinear Anal. 64 (2006), no. 5, 1057–1099. MR 2196811
Reference: [22] Lieberman G. M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations.Comm. Partial Differential Equations 16 (1991), no. 2–3, 311–361. MR 1104103, 10.1080/03605309108820761
Reference: [23] Lindqvist P.: On the equation $ div(|\nabla u|^{p-2}\nabla u)+\lambda|u|^{p-2}u=0$.Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164. MR 1007505, 10.1090/S0002-9939-1990-1007505-7
Reference: [24] Lindqvist P.: Note on a nonlinear eigenvalue problem.Rocky Mountain J. Math. 23 (1993), no. 1, 281–288. MR 1212743, 10.1216/rmjm/1181072623
Reference: [25] Mihăilescu M., Rădulescu V.: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent.Proc. Amer. Math. Soc. 135 (2007), no. 9, 2929–2937. MR 2317971, 10.1090/S0002-9939-07-08815-6
Reference: [26] Mihăilescu M., Rădulescu V.: Eigenvalue problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces.Anal. Appl. (Singap.) 6 (2008), no. 1, 83–98. MR 2380887, 10.1142/S0219530508001067
Reference: [27] Mihăilescu M., Rădulescu V., Repovš D.: On a non-homogeneous eigenvalue problem involving a potential: an Orlicz–Sobolev space setting.J. Math. Pures Appl. (9) 93 (2010), no. 2, 132–148. MR 2584738, 10.1016/j.matpur.2009.06.004
Reference: [28] Mustonen V., Tienari M.: An eigenvalue problem for generalized Laplacian in Orlicz–Sobolev spaces.Proc. Roy. Soc. Edinburgh A 129 (1999), no. 1, 153–163. MR 1669197
Reference: [29] Pick L., Kufner A., John O., Fučík S.: Function Spaces.Vol. 1, De Gruyter Series in Nonlinear Analysis and Applications, 14, Walter de Gruyter, Berlin, 2013. MR 3024912
Reference: [30] Rădulescu V. D.: Nonlinear elliptic equations with variable exponent: old and new.Nonlinear Anal. 121 (2015), 336–369. MR 3348928
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-3_5.pdf 340.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo