Previous |  Up |  Next

Article

Title: One-adhesive polymatroids (English)
Author: Csirmaz, Laszlo
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 5
Year: 2020
Pages: 886-902
Summary lang: English
.
Category: math
.
Summary: Adhesive polymatroids were defined by F. Matúš motivated by entropy functions. Two polymatroids are adhesive if they can be glued together along their joint part in a modular way; and are one-adhesive, if one of them has a single point outside their intersection. It is shown that two polymatroids are one-adhesive if and only if two closely related polymatroids have joint extension. Using this result, adhesive polymatroid pairs on a five-element set are characterized. (English)
Keyword: polymatroid
Keyword: amalgam
Keyword: adhesive polymatroid
Keyword: entropy function
Keyword: polyhedral cone
MSC: 05B35
MSC: 52B12
MSC: 94A15
idMR: MR4187778
DOI: 10.14736/kyb-2020-5-0886
.
Date available: 2020-12-16T15:58:34Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148489
.
Reference: [1] Ahlswede, R., Cai, N., Li, S.-Y. R., Yeung, R. W.: Network information flow..IEEE Trans. Inform. Theory 46 (2000), 1204-1216. MR 1768542, 10.1109/18.850663
Reference: [2] Bonin, J. E.: A note on the sticky matroid conjecture..Ann. Comb. 15 (2011), 619-624. MR 2854783, 10.1007/s00026-011-0112-7
Reference: [3] Christof, T., Loebel, A.: Porta: Polyhedron Representation Transformation Algorithm, Version 1.4.1..
Reference: [4] Csirmaz, L., Matúš, F.: Entropy region and convolution..IEEE Trans. Inf. Theory 62 (2016), 6007-6018. MR 3565097, 10.1109/tit.2016.2601598
Reference: [5] Dougherty, R., Freiling, C., Zeger, K.: Linear rank inequalities on five or more variables..Available at arXiv.org, arXiv:0910.0284, 2019.
Reference: [6] Martí-Farré, J., Padró, C.: Ideal secret sharing schemes whose minimal qualified subsets have at most three participants..Des. Codes Cryptogr. 52 (2009), 1-14. MR 2496243, 10.1007/s10623-008-9264-9
Reference: [7] Fujishige, S.: Polymatroidal dependence structure of a set of random variables..Inform. Control 39 (1978), 55-72. MR 0514262, 10.1016/s0019-9958(78)91063-x
Reference: [8] Ingleton, A. W.: Representation of matroids..In: Combinatorial mathematics and its applications (D. J. A. Welsh, ed.) Academic Press, London, New York 1971, pp. 149-169. MR 0278974
Reference: [9] Lovász, L.: Submodular functions and convexity..In: Mathematical Programming - The State of the Art (A. Bachem, M. Grötchel and B. Korte, eds.), Springer-Verlag, Berlin 1982, pp. 234-257. MR 0717403, 10.1007/978-3-642-68874-4_10
Reference: [10] Matúš, F.: Probabilistic conditional independence structures and matroid theory: background..Int. J. General Syst. 22 (1994), 185-196. 10.1080/03081079308935205
Reference: [11] Matúš, F.: Adhesivity of polymatroids..Discrete Math. 307 (2007), 2464-2477. MR 2359593, 10.1016/j.disc.2006.11.013
Reference: [12] Matúš, F.: Two constructions on limits of entropy functions..IEEE Trans. Inform. Theory 53 (2007), 320-330. MR 2292891, 10.1109/tit.2006.887090
Reference: [13] Matúš, F.: Infinitely many information inequalities..In: Proc. IEEE ISIT 2007, Nice, pp. 41-44.
Reference: [14] Matúš, F., Studený, M.: Conditional independences among four random variables I..Combin. Probab. Comput. 4 (1995), 269-278. MR 1356579, 10.1017/s0963548300001644
Reference: [15] Oxley, J. G.: Matroid Theory..Oxford Science Publications. The Calrendon Press, Oxford University Press, New York 1992. MR 1207587
Reference: [16] Padró, C.: Lecture Notes in Secret Sharing..Cryptology ePrint Archive 2012/674.
Reference: [17] Seymour, P. D.: On secret sharing matroids..J. Combin. Theory, Ser B 56 (1992), 69-73. MR 1182458, 10.1016/0095-8956(92)90007-k
Reference: [18] Studeny, M., Bouckaert, R. R., Kocka, T.: Extreme Supermodular Set Functions over Five Variables..Research Report No. 1977, Institute of Information Theory and Automation, Prague 2000.
Reference: [19] Yeung, R. W.: A first course in information theory..Kluwer Academic / Plenum Publishers 2002. MR 2042182
Reference: [20] Ziegler, G. M.: Lectures on polytopes..Graduate Texts in Mathematics 152 Springer, 1994. MR 1311028, 10.1007/978-1-4613-8431-1
.

Files

Files Size Format View
Kybernetika_56-2020-5_4.pdf 511.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo