Previous |  Up |  Next

Article

Title: Secret sharing schemes for ports of matroids of rank 3 (English)
Author: Farràs, Oriol
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 5
Year: 2020
Pages: 903-915
Summary lang: English
.
Category: math
.
Summary: A secret sharing scheme is ideal if the size of each share is equal to the size of the secret. Brickell and Davenport showed that the access structure of an ideal secret sharing scheme is determined by a matroid. Namely, the minimal authorized subsets of an ideal secret sharing scheme are in correspondence with the circuits of a matroid containing a fixed point. In this case, we say that the access structure is a matroid port. It is known that, for an access structure, being a matroid port is not a sufficient condition to admit an ideal secret sharing scheme. In this work we present a linear secret sharing scheme construction for ports of matroids of rank 3 in which the size of each share is at most $n$ times the size of the secret. Using the previously known secret sharing constructions, the size of each share was $O(n^2/\log n)$ the size of the secret. Our construction is extended to ports of matroids of any rank $k\geq 2$, obtaining secret sharing schemes in which the size of each share is at most $n^{k-2}$ times the size of the secret. This work is complemented by presenting lower bounds: There exist matroid ports that require $(\mathbb{F}_q,\ell)$-linear secret schemes with total information ratio $\Omega(2^{n/2}/\ell n^{3/4}\sqrt{\log q})$. (English)
Keyword: secret sharing schemes
Keyword: matroids
Keyword: matroid ports
MSC: 05B35
MSC: 94A60
MSC: 94A62
idMR: MR4187779
DOI: 10.14736/kyb-2020-5-0903
.
Date available: 2020-12-16T16:00:00Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148490
.
Reference: [1] Applebaum, B., Beimel, A., Farràs, O., Nir, O., Peter, N.: Secret-Sharing Schemes for General and Uniform Access Structures..In: Advances in Cryptology - EUROCRYPT 2019, Lect. Notes Comput. Sci. 11478 (2019), Springer, pp. 441-471. MR 3964688, 10.1007/978-3-030-17659-4_15
Reference: [2] Babai, L., Gál, A., Wigderson, A.: Superpolynomial lower bounds for monotone span programs..Combinatorica 19 (1999), 301-319. MR 1723251, 10.1007/s004930050058
Reference: [3] Bansal, N., Pendavingh, R. A., Pol, J. G. van der: On the number of matroids..Combinatorica 49 (2013), 675-694. MR 3186782, 10.1007/s00493-014-3029-z
Reference: [4] Beimel, A.: Secret-sharing schemes: A survey..In: IWCC 2011, Lect. Notes Comput. Sci. 6639 (2019), Springer, pp. 11-46. MR 2834691, 10.1007/978-3-642-20901-7_2
Reference: [5] Beimel, A., Ben-Efraim, A., Padró, C., Tyomkin, I.: Multi-linear secret-sharing schemes..In: TCC, Lect. Notes Comput. Sci. 8349 (2019), Springer, pp. 394-418. MR 3183548, 10.1007/978-3-642-20901-7_2
Reference: [6] Beimel, A., Chor, B.: Universally ideal secret sharing schemes..IEEE Trans. Inform. Theory 40 (1994), 3, 786-794. MR 1295314, 10.1109/18.335890
Reference: [7] Beimel, A., Livne, N.: On matroids and nonideal secret sharing..IEEE Trans. Inform. Theory 54 (2008), 6, 2626-2643. MR 2449268, 10.1109/tit.2008.921708
Reference: [8] Beimel, A., Livne, N., Padró, C.: Matroids can be far from ideal secret sharing..In: TCC 2008, Lect. Notes Comput. Sci. 4948 (2008), Springer, pp. 194-212. MR 2494143, 10.1007/978-3-540-78524-8_12
Reference: [9] Ben-Efraim, A.: Secret-sharing matroids need not be algebraic..Discrete Math. 339 (2016), 8, 2136-2145. MR 3500143, 10.1016/j.disc.2016.02.012
Reference: [10] Benaloh, J. C., Leichter, J.: Generalized secret sharing and monotone functions..In: CRYPTO'88, Lect. Notes Comput. Sci. 403 (1988), Springer, pp. 27-35. MR 1046379, 10.1007/0-387-34799-2_3
Reference: [11] Blakley, G. R.: Safeguarding cryptographic keys..In: AFIPS Conference Proc. 48 (1979), pp. 313-317. 10.1109/mark.1979.8817296
Reference: [12] Blundo, C., Santis, A. De, Stinson, D. R., Vaccaro, U.: Graph decomposition and secret sharing schemes..J. of Cryptology 8 (1995), 1, 39-64. MR 1319955, 10.1007/bf00204801
Reference: [13] Brickell, E. F., Davenport, D. M.: On the classification of ideal secret sharing schemes..J. of Cryptology 4 (1991), 73, 123-134. MR 1062240, 10.1007/bf00196772
Reference: [14] Csirmaz, L.: The size of a share must be large..J. Cryptology 1 (1997), 4, 223-231. MR 1476611, 10.1007/s001459900029
Reference: [15] Csirmaz, L., Ligeti, P., Tardos, G.: Erdös-Pyber theorem for hypergraphs and secret sharing..Graphs Combinator. 31 (2015), 5, 1335-1346. MR 3386012, 10.1007/s00373-014-1448-7
Reference: [16] Erdös, P., Pyber, L.: Covering a graph by complete bipartite graphs..Discrete Math. 170 (1997), 1-3, 249-251. MR 1452952, 10.1016/s0012-365x(96)00124-0
Reference: [17] Farràs, O., Kaced, T., Martín, S., Padró, C.: Improving the linear programming technique in the search for lower bounds in secret sharing..In: Advances in Cryptology - Eurocrypt 2018, volume 10820 Lecture Notes in Comput. Sci. 10820 (2018), Springer, pp. 597-621. MR 3794799, 10.1007/978-3-319-78381-9_22
Reference: [18] Farràs, O., Martí-Farré, J., Padró, C.: Ideal multipartite secret sharing schemes..J. Cryptology 25 (2012), 434-463. MR 2900407, 10.1007/s00145-011-9101-6
Reference: [19] Gürpinar, E., Romashchenko, A.: How to Use Undiscovered Information Inequalities: Direct Applications of the Copy Lemma..In: 2019 IEEE International Symposium on Information Theory (ISIT), pp. 1377-1381.
Reference: [20] Graham, R. L., Sloane, N. J. A.: Lower bounds for constant weight codes..IEEE Trans. Inform. Theory 26 (1980), 1, 37-43. MR 0560390, 10.1109/tit.1980.1056141
Reference: [21] Ingleton, A. W.: Representation of matroids..In: Combinatorial Mathematics and its Applications, (D. J. A. Welsh, ed.), Academic Press, London 1971, pp. 149-167. MR 0278974
Reference: [22] Jackson, W.-A., Martin, K. M.: Geometric secret sharing schemes and their duals..Codes Cryptography 4 (1994), 1, 83-95. MR 1260371, 10.1007/bf01388562
Reference: [23] Korshunov, A. D.: Monotone Boolean functions..Russ. Math. Surv. 58 (2003), 5, 929-1001. MR 2035720, 10.1070/rm2003v058n05abeh000667
Reference: [24] Knuth, D. E.: The asymptotic number of geometries..J. Combinator. Theory, Ser. A 16 (1974), 3, 398-400. MR 0335312, 10.1016/0097-3165(74)90063-6
Reference: [25] Liu, T., Vaikuntanathan, V.: Breaking the circuit-size barrier in secret sharing..In: 50th STOC 2018, pp. 699-708. MR 3826287
Reference: [26] Martí-Farré, J., Padró, C.: Secret sharing schemes on sparse homogeneous access structures with rank three..Electr. J. Comb. 11 (2004), 1. MR 2097338,
Reference: [27] Martí-Farré, J., Padró, C.: Ideal secret sharing schemes whose minimal qualified subsets have at most three participants..Des. Codes Cryptography 52 (2009), 1, 1-14. MR 2496243, 10.1007/s10623-008-9264-9
Reference: [28] Martí-Farré, J., Padró, C.: On secret sharing schemes, matroids and polymatroids..J. Math. Cryptology 4 (2010), 2, 95-120. MR 2729351, 10.1007/s10623-008-9264-9
Reference: [29] Matúš, F.: Probabilistic conditional independence structures and matroid theory: Background..Int. J. Gen. Syst. 22 (1994), 185-196. 10.1080/03081079308935205
Reference: [30] Matúš, F.: Matroid representations by partitions..Discrete Math. 203 (1999), 169-194. MR 1696241, 10.1016/s0012-365x(99)00004-7
Reference: [31] Matúš, F.: Adhesivity of polymatroids..Discrete Math. 307 (2007), 2464-2477. MR 2359593, 10.1016/j.disc.2006.11.013
Reference: [32] Mayhew, D., Newman, M., Welsh, D., Whittle, G.: On the asymptotic proportion of connected matroids..Eur. J. Comb. 32 (2011), 6, 882-890. MR 2821559, 10.1016/j.ejc.2011.01.016
Reference: [33] Oxley, J. G.: Matroid Theory. Second Edition..Oxford Graduate Texts in Mathematics 21, The Clarendon Press, Oxford 2011. MR 2849819
Reference: [34] Padró, C.: Lecture notes in secret sharing..Cryptology ePrint Archive, Report 2012/674 (2912).
Reference: [35] Seymour, P. D.: A forbidden minor characterization of matroid ports..Quart. J. Math. Oxford Ser. 27 (1976), 407-413. MR 0429611, 10.1093/qmath/27.4.407
Reference: [36] Shamir, A.: How to share a secret..Comm. ACM 22 (1979), 612-613. MR 0549252, 10.1145/359168.359176
Reference: [37] Simonis, J., Ashikhmin, A.: Almost affine codes..Designs Codes Cryptogr. 14 (1998), 2, 179-197. MR 1614357, 10.1023/a:1008244215660
Reference: [38] Wegener, I.: The Complexity of Boolean Functions..Wiley-Teubner, 1987. Zbl 0623.94018, MR 0905473
.

Files

Files Size Format View
Kybernetika_56-2020-5_5.pdf 499.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo