Previous |  Up |  Next

Article

Title: A note on representing dowling geometries by partitions (English)
Author: Matúš, František
Author: Ben-Efraim, Aner
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 5
Year: 2020
Pages: 934-947
Summary lang: English
.
Category: math
.
Summary: We prove that a rank $\geq 3$ Dowling geometry of a group $H$ is partition representable if and only if $H$ is a Frobenius complement. This implies that Dowling group geometries are secret-sharing if and only if they are multilinearly representable. (English)
Keyword: matroid representations
Keyword: partition representations
Keyword: Dowling geometries
Keyword: Frobenius groups
MSC: 05B35
idMR: MR4187781
DOI: 10.14736/kyb-2020-5-0934
.
Date available: 2020-12-16T16:02:19Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148492
.
Reference: [1] Beimel, A., Ben-Efraim, A., Padró, C., Tyomkin, I.: Multi-linear secret-sharing schemes..Theory Cryptogr. Conf. 14 (2014), 394-418. MR 3183548, 10.1007/978-3-642-54242-8_17
Reference: [2] Ben-Efraim, A.: Secret-sharing matroids need not be Algebraic..Discrete Math. 339 (2015), 8, 2136-2145. MR 3500143, 10.1016/j.disc.2016.02.012
Reference: [3] Brickell, E. F., Davenport, D. M.: On the classification of ideal secret sharing schemes..
Reference: [4] Brown, R.: Frobenius groups and classical maximal orders..Memoirs Amer. Math. Soc. 151 (2001), 717. MR 1828640, 10.1090/memo/0717
Reference: [5] Dowling, T. A.: A class of geometric lattices based on finite groups..J. Combinat. Theory, Ser. B 14 (1973), 61-86. MR 0307951, 10.1016/s0095-8956(73)80007-3
Reference: [6] Evans, D. M., Hrushovski, E.: Projective planes in algebraically closed fields..Proc. London Math. Soc. 62 (1989), 3, 1-24. MR 1078211, 10.1112/plms/s3-62.1.1
Reference: [7] Feit, W.: Characters of Finite Groups..W. A. Benjamin Company, Inc., New York 1967. MR 0219636
Reference: [8] Matúš, F.: Matroid representations by partitions..Discrete Math. 203 (1999), 169-194. MR 1696241, 10.1016/s0012-365x(99)00004-7
Reference: [9] Jacobson, N.: Basic Algebra II. (Second Edition).W. H. Freeman and Co., New York 1989. MR 1009787
Reference: [10] Oxley, J. G.: Matroid Theory. (Second Edition).Oxford University Press Inc., New York 2011. MR 2849819, 10.1093/acprof:oso/9780198566946.001.0001
Reference: [11] Passman, D. S.: Permutation Groups..Dover Publications, Inc. Mineola, New York 2012. MR 2963408
Reference: [12] Pendavingh, R. A., Zwam, S. H. M. van: Skew partial fields, multilinear representations of matroids, and a matrix tree theorem..Adv. Appl. Math. 50 (2013), 1, 201-227. MR 2996392, 10.1016/j.aam.2011.08.003
Reference: [13] Seymour, P. D.: On secret-sharing matroids..J. Combinat. Theory, Ser. B 56 (1992), 69-73. MR 1182458, 10.1016/0095-8956(92)90007-k
Reference: [14] Simonis, J., Ashikhmin, A.: Almost affine codes..Designs Codes Cryptogr. 14 (1998), 2, 179-197. MR 1614357, 10.1023/a:1008244215660
Reference: [15] Suzuki, M.: Group Theory I..Springer-Verlag, Berlin 1982. MR 0648772
Reference: [16] Vertigan, D.: Dowling Geometries representable over rings..Ann. Combinat. 19 (2015), 225-233. MR 3319870, 10.1007/s00026-015-0250-4
.

Files

Files Size Format View
Kybernetika_56-2020-5_7.pdf 651.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo