Previous |  Up |  Next

Article

Title: Violations of the Ingleton inequality and revising the four-atom conjecture (English)
Author: Boston, Nigel
Author: Nan, Ting-Ting
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 5
Year: 2020
Pages: 916-933
Summary lang: English
.
Category: math
.
Summary: The entropy region is a fundamental object of study in mathematics, statistics, and information theory. On the one hand, it involves pure group theory, governing inequalities satisfied by subgroup indices, whereas on the other hand, computing network coding capacities amounts to a convex optimization over this region. In the case of four random variables, the points in the region that satisfy the Ingleton inequality (corresponding to abelian groups and to linear network codes) form a well-understood polyhedron, and so attention has turned to Ingleton-violating points in the region. How far these points extend is measured by their Ingleton score, where points with positive score are Ingleton-violating. The Four-Atom Conjecture stated that the Ingleton score cannot exceed 0.089373, but this was disproved by Matúš and Csirmaz. In this paper we employ two methods to investigate Ingleton-violating points and thereby produce the currently largest known Ingleton scores. First, we obtain many Ingleton-violating examples from non-abelian groups. Factorizability appears in many of those and is used to propose a systematic way to produce more. Second, we rephrase the problem of maximizing Ingleton score as an optimization question and introduce a new Ingleton score function, which is a limit of Ingleton scores with maximum unchanged. We use group theory to exploit symmetry in these new Ingleton score functions and the relations between them. Our approach yields some large Ingleton scores and, using this methodology, we find that there are entropic points with score 0.0925000777, currently the largest known score. (English)
Keyword: entropy vectors
Keyword: information inequalities
Keyword: subgroup indices
MSC: 20B35
MSC: 94A15
idMR: MR4187780
DOI: 10.14736/kyb-2020-5-0916
.
Date available: 2020-12-16T16:01:25Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148491
.
Reference: [1] Ahlswede, R., Cai, N., Li, S.-Y. R., Yeung, R. W.: Network information flow..IEEE Trans. Inform. Theory 46 (2007), 1204-1216. MR 1768542, 10.1109/18.850663
Reference: [2] Alam, S., Thakor, S., Abbas, S.: On Enumerating Distributions for Associated Vectors in the Entropy Space..arXiv:1807.08573, 2018.
Reference: [3] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system..The user language, J. Symbolic Comput. 24 (1997), 235-265. MR 1484478, 10.1006/jsco.1996.0125
Reference: [4] Boston, N., Nan, T.-T.: Large violations of the Ingleton inequality..In: 50th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2012. 10.1109/allerton.2012.6483410
Reference: [5] Boston, N., Nan, T.-T.: A refinement of the four-atom conjecture..In: International Symposium on Network Coding (NetCod), 2013. 10.1109/netcod.2013.6570833
Reference: [6] Chen, T.: Group characterizable entropiy functions..In: Proc. of the 2005 IEEE International Symposium on Information Theory, Nice 2007, pp. 507-510. 10.1109/isit.2007.4557275
Reference: [7] Chen, T. H., Yeung, R. W.: On a relation between information inequalities and group theory..IEEE Trans. Inform. Theory 48 (2002), 1992-1995. MR 1930005, 10.1109/tit.2002.1013138
Reference: [8] Chou, P. A., Wu, Y., Jain, K.: Practical network coding..In: Proc. 2003 Allerton Conf. on Commun., Control, and Computing, 2003, pp. 40-49.
Reference: [9] Dougherty, R., Freiling, C., Zeger, K.: Insufficiency of linear coding in network information flow..IEEE Trans. Inform. Theory 51 (2005), 2745-2759. MR 2236245, 10.1109/tit.2005.851744
Reference: [10] Dougherty, R., Freiling, C., Zeger, K.: Networks, matroids, and non-Shannon information inequalities..IEEE Trans. Inform. Theory 53 (2007), 1949-1969. MR 2321860, 10.1109/tit.2007.896862
Reference: [11] Dougherty, R., Freiling, C., Zeger, K.: Non-Shannon information inequalities in four random variables..arXiv:1104.3602v1, 2011. MR 2321860
Reference: [12] Ho, T., Médard, M., Koetter, R., Karger, D. R., Effros, M., Shi, J., Leong, B.: A random linear network coding approach to multicast..IEEE Trans. Inform. Theory 52 (2006), 4413-4430. MR 2300827, 10.1109/tit.2006.881746
Reference: [13] Ingleton, A.: Representation of matroids..In: Combinatorial Mathematics and its Applications, 1971, pp. 149-167. MR 0278974
Reference: [14] M.Isaacs, I.: Finite Group Theory..American Mathematical Society, 2008. MR 2426855, 10.1090/gsm/092
Reference: [15] Koetter, R., Médard, M.: An algebraic approach to network coding..IEEE/ACM Trans. Network. 2 (2003), 782-795. 10.1109/tnet.2003.818197
Reference: [16] Li, R., Yeung, R., Cai, N.: Linear network coding..IEEE Trans. Inform. Theory 49 (2003), 371-381. MR 1966785, 10.1109/tit.2002.807285
Reference: [17] Makarycheve, K., Makarycheve, L., Romashchenko, A. E., Vereshchagin, N. K.: A new class of non-Shannon type inequalities for entropies..Com. Inform. Syst. 2 (2002), 147-166. MR 1958013, 10.4310/cis.2002.v2.n2.a3
Reference: [18] Mao, W., Thill, M., Hassibi, B.: On Ingleton-violating finite groups..IEEE Trans. Inform. Theory 63 (2017), 183-200. MR 3599943, 10.1109/tit.2016.2627530
Reference: [19] Matúš, F.: Conditional independences among four random variables II..Combin. Probab. Comput. 4 (1995), 407-417. MR 1377558, 10.1017/s0963548300001747
Reference: [20] Matúš, F.: Conditional independences among four random variables III: Final conclusion..Combin. Probab. Comput. 8 (1999), 269-276. MR 1702569, 10.1017/s0963548399003740
Reference: [21] Matúš, F.: Infinitely many information inequalities..In: IEEE International Symposium on Information Theory, IEEE 2007, pp. 41-44. 10.1109/isit.2007.4557201
Reference: [22] Matúš, F., Csirmaz, L.: Entropy region and convolution..IEEE Trans. Inform. Theory 62 (2016), 6007-6018. MR 3565097, 10.1109/tit.2016.2601598
Reference: [23] Matúš, F., Studený, M.: Conditional independences among four random variables I..Combin. Probab. Comput. 4 (1995), 269-278. MR 1356579, 10.1017/s0963548300001644
Reference: [24] Muralidharan, V. T., Rajan, B. S.: On the vector linear solvability of networks and discrete polymatroids..GLOBECOM 2013, pp. 1979-1984.
Reference: [25] Nan, T.-T.: Entropy Regions and the Four-Atom Conjecture..PhD. Dissertation, Department of Mathematics, University of Wisconsin-Madison, 2015. MR 3358242
Reference: [26] Paajanen, P.: Finite p-groups, entropy vectors and the ingleton inequality for nilpotent groups..IEEE Trans. Inform. Theory 60 (2014), 3821-3824. MR 3225931, 10.1109/TIT.2014.2321561
Reference: [27] Stancu, R., Oggier, F.: Finite nilpotent and metacyclic groups never violate the Ingleton inequality..2012 International Symposium on Network Coding (NetCod), 2012, pp. 25-30. 10.1109/netcod.2012.6261879
Reference: [28] Waterhouse, W.: Do symmetric problems have symmetric solutions?.Amer. Math. Monthly 90 (1983), 378-387. MR 0707152, 10.1080/00029890.1983.11971235
Reference: [29] Yeung, R. W.: Information Theory and Network Coding..Springer, 2008.
Reference: [30] Zhang, Z., Yeung, R. W.: A non-Shannon type conditional inequality of information quantities..IEEE Trans. Inform. Theory 43 (1997), 1982-1986. MR 1481054, 10.1109/18.641561
Reference: [31] Zhang, Z., Yeung, R. W.: On characterization of entropy function via information inequalities..IEEE Trans. Inform. Theory 44 (1998), 1440-1452. MR 1665794, 10.1109/18.681320
.

Files

Files Size Format View
Kybernetika_56-2020-5_6.pdf 482.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo