Previous |  Up |  Next

Article

Keywords:
mormal approximation; Gaussian scale mixture; Plancherel theorem
Summary:
For a given positive random variable $V>0$ and a given $Z\sim N(0,1)$ independent of $V$, we compute the scalar $t_0$ such that the distance in the $L^2(\mathbb{R})$ sense between $Z V^{1/2}$ and $Z\sqrt{t_0}$ is minimal. We also consider the same problem in several dimensions when $V$ is a random positive definite matrix.
References:
[1] Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2. Wiley, New York 1966. MR 0210154
[2] Gneiting, T.: Normal scale mixture and probability densities. J. Stat. Comput. Simul. 59 (1997), 375-384. DOI 10.1080/00949659708811867
[3] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. Sixth edition. Oxford University Press, London 2008. DOI 10.1017/s0025557200007464 | MR 2445243
[4] Kolmogorov, A. N.: Sulla determinazióne empirica di una légge di distribuzióne. G. Inst. Ital. Attuari 4 (1933), 83-91.
[5] Letac, G., Massam, H., Mohammadi, R.: The ratio of normalizing constants for Bayesian Gaussian model selection. arXiv 1706. 04416 (2017), revision Oct. 12th 2018.
[6] Monahan, J. F., Stefanski, L. A.: Normal Scale Mixture Approximations to $F^*(z)$ and Computation of the Logistic-Normal Integral. Handbook of the Logistic Distribution (N. Balakrishnan, ed.), Marcel Dekker, New York 1992. MR 1093420
[7] Palmer, J. A., Kreutz-Delgado, K., Maleig, S.: Dependency models based on generalized Gaussian scale mixtures. DRAFT UCSD-SCCN v1.0, Sept 7 (2011).
[8] Stefanski, L. A.: A normal scale mixture representation of the logistic distribution. Stat. Probab. Lett- 11 (1991), 69-70. DOI 10.1016/0167-7152(91)90181-p | MR 1093420
[9] West, M.: On scale mixture of normal distributions. Biometrika 74 (1987), 646-648. DOI 10.1093/biomet/74.3.646 | MR 0909372
Partner of
EuDML logo