Previous |  Up |  Next

Article

Title: The operation $ABA$ in operator algebras (English)
Author: Gaál, Marcell
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 4
Year: 2020
Pages: 513-521
Summary lang: English
.
Category: math
.
Summary: The binary operation $aba$, called Jordan triple product, and its variants (such as e.g. the sequential product $\sqrt{a} b \sqrt{a}$ or the inverted Jordan triple product $a b^{-1} a$) appear in several branches of operator theory and matrix analysis. In this paper we briefly survey some analytic and algebraic properties of these operations, and investigate their intimate connection to Thompson type isometries in different operator algebras. (English)
Keyword: loop
Keyword: gyrogroup
Keyword: Jordan triple product
Keyword: Thompson metric
Keyword: JB-algebra
MSC: 20N05
idZBL: Zbl 07332725
idMR: MR4230956
DOI: 10.14712/1213-7243.2020.041
.
Date available: 2021-02-25T12:42:03Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148661
.
Reference: [1] Abe T., Akiyama S., Hatori O.: Isometries of the special orthogonal group.Linear Algebra Appl. 439 (2013), no. 1, 174–188. MR 3045229
Reference: [2] Beneduci R., Molnár L.: On the standard K-loop structure of positive invertible elements in a $C^{*}$-algebra.J. Math. Anal. Appl. 420 (2014) no. 1, 551–562. MR 3229839, 10.1016/j.jmaa.2014.05.009
Reference: [3] Gaál M.: On certain generalized isometries of the special orthogonal group.Arch. Math. (Basel) 110 (2018), no. 1, 61–70. MR 3742293, 10.1007/s00013-017-1122-4
Reference: [4] Hatori O.: Isometries on the special unitary group.in Function Spaces in Analysis, Contemp. Math., 645, Amer. Math. Soc., Providence, 2015, pages 119–134. MR 3382409, 10.1090/conm/645/12925
Reference: [5] Hatori O., Molnár L.: Isometries of the unitary groups and Thompson isometries of the spaces of invertible positive elements in $C^{*}$-algebras.J. Math. Anal. Appl. 409 (2014), no. 1, 158–167. MR 3095026, 10.1016/j.jmaa.2013.06.065
Reference: [6] Hatori O., Molnár L.: Generalized isometries of the special unitary group.Arch. Math. (Basel) 106 (2016), no. 2, 155–163. MR 3453990, 10.1007/s00013-015-0856-0
Reference: [7] Hatori O., Molnár L.: Spectral conditions for Jordan $^*$-isomorphisms on operator algebras.Studia Math. 236 (2017), no. 2, 101–126. MR 3610684, 10.4064/sm8393-8-2016
Reference: [8] Isidro J. M., Rodríguez-Palacios Á.: Isometries of JB-algebras.Manuscripta Math. 86 (1995), no. 3, 337–348. MR 1323796, 10.1007/BF02567998
Reference: [9] Lemmens B., Roelands M., Wortel M.: Hilbert and Thompson isometries on cones in JB-algebras.Math. Z. 292 (2019), no. 3–4, 1511–1547. MR 3980302, 10.1007/s00209-018-2144-8
Reference: [10] Molnár L.: General Mazur–Ulam type theorems and some applications.Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Oper. Theory Adv. Appl., 250, Birkhäuser, 2015, pages 311–342. MR 3468225
Reference: [11] Sabinin L. V., Sabinina L. L., Sbitneva L. V.: On the notion of gyrogroup.Aequationes Math. 56 (1998), no. 1–2, 11–17. MR 1628291, 10.1007/s000100050039
Reference: [12] Ungar A. A.: Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity.World Scientific Publishing, Hackensack, 2008. Zbl 1147.83004, MR 2396580
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-4_8.pdf 196.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo