Title:
|
The centre of a Steiner loop and the maxi-Pasch problem (English) |
Author:
|
Kozlik, Andrew R. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
61 |
Issue:
|
4 |
Year:
|
2020 |
Pages:
|
535-545 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A binary operation ``$\cdot$'' which satisfies the identities $x\cdot e = x$, $x \cdot x = e$, $(x \cdot y) \cdot x = y$ and $x \cdot y = y \cdot x$ is called a Steiner loop. This paper revisits the proof of the necessary and sufficient conditions for the existence of a Steiner loop of order $n$ with centre of order $m$ and discusses the connection of this problem to the question of the maximum number of Pasch configurations which can occur in a Steiner triple system (STS) of a given order. An STS which attains this maximum for a given order is said to be {\it maxi-Pasch}. We show that loop factorization preserves the maxi-Pasch property and find that the Steiner loops of all currently known maxi-Pasch Steiner triple systems have centre of maximum possible order. (English) |
Keyword:
|
Steiner loop |
Keyword:
|
centre |
Keyword:
|
nucleus |
Keyword:
|
Steiner triple system |
Keyword:
|
Pasch configuration |
Keyword:
|
quadrilateral |
MSC:
|
05B07 |
MSC:
|
20N05 |
idZBL:
|
Zbl 07332727 |
idMR:
|
MR4230958 |
DOI:
|
10.14712/1213-7243.2020.035 |
. |
Date available:
|
2021-02-25T12:44:43Z |
Last updated:
|
2023-01-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148663 |
. |
Reference:
|
[1] Bruck R. H.: A Survey of Binary Systems.Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, 20, Reihe: Gruppentheorie, Springer, Berlin, 1971. Zbl 0141.01401, MR 0093552 |
Reference:
|
[2] Colbourn C. J.: The configuration polytope of $ l$-line configurations in Steiner triple systems.Math. Slovaca 59 (2009), no. 1, 77–108. MR 2471691, 10.2478/s12175-008-0111-2 |
Reference:
|
[3] Colbourn C. J., Rosa A.: Triple Systems.Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Zbl 1030.05017, MR 1843379 |
Reference:
|
[4] Danziger P., Mendelsohn E., Grannell M. J., Griggs T. S.: Five-line configurations in Steiner triple systems.Utilitas Math. 49 (1996), 153–159. MR 1396296 |
Reference:
|
[5] Di Paola J. W.: When is a totally symmetric loop a group?.Amer. Math. Monthly 76 (1969), 249–252. MR 0240231, 10.1080/00029890.1969.12000185 |
Reference:
|
[6] Donovan D.: The centre of a sloop.Combinatorial Mathematics and Combinatorial Computing, Australas. J. Combin. 1 (1990), 83–89. MR 1126969 |
Reference:
|
[7] Donovan D., Rahilly A.: The central spectrum of the order of a Steiner loop.Southeast Asian Bull. Math. 16 (1992), no. 2, 115–121. MR 1205545 |
Reference:
|
[8] Drápal A.: On quasigroups rich in associative triples.Discrete Math. 44 (1983), no. 3, 251–265. MR 0696286, 10.1016/0012-365X(83)90189-9 |
Reference:
|
[9] Grannell M. J., Griggs T. S., Mendelsohn E.: A small basis for four‐line configurations in Steiner triple systems.J. Combin. Des. 3 (1995), no. 1, 51–59. MR 1305447, 10.1002/jcd.3180030107 |
Reference:
|
[10] Grannell M. J., Griggs T. S., Whitehead C. A.: The resolution of the anti-Pasch conjecture.J. Combin. Des. 8 (2000), no. 4, 300–309. MR 1762019, 10.1002/1520-6610(2000)8:4<300::AID-JCD7>3.0.CO;2-R |
Reference:
|
[11] Grannell M. J., Lovegrove G. J.: Maximizing the number of Pasch configurations in a Steiner triple system.Bull. Inst. Combin. Appl. 69 (2013), 23–35. MR 3155869 |
Reference:
|
[12] Gray B. D., Ramsay C.: On the number of Pasch configurations in a Steiner triple system.Bull. Inst. Combin. Appl. 24 (1998), 105–112. MR 1641476 |
Reference:
|
[13] Kaski P., Östergård P. R. J.: The Steiner triple systems of order 19.Math. Comp. 73 (2004), no. 248, 2075–2092. MR 2059752, 10.1090/S0025-5718-04-01626-6 |
Reference:
|
[14] Kirkman T. P.: On a problem in combinations.Cambridge and Dublin Math. J. 2 (1847), 191–204. |
Reference:
|
[15] Ling A. C. H., Colbourn C. J., Grannell M. J., Griggs T. S.: Construction techniques for anti-Pasch Steiner triple systems.J. London Math. Soc. (2) 61 (2000), no. 3, 641–657. MR 1765934, 10.1112/S0024610700008838 |
Reference:
|
[16] McCune W.: Mace4 Reference Manual and Guide.Tech. Memo ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, 2003. |
Reference:
|
[17] Stinson D. R., Wei Y. J.: Some results on quadrilaterals in Steiner triple systems.Discrete Math. 105 (1992), no. 1–3, 207–219. MR 1180204, 10.1016/0012-365X(92)90143-4 |
. |