Previous |  Up |  Next

Article

Title: Semisymmetrization and Mendelsohn quasigroups (English)
Author: Smith, Jonathan D. H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 4
Year: 2020
Pages: 553-566
Summary lang: English
.
Category: math
.
Summary: The semisymmetrization of an arbitrary quasigroup builds a semisymmetric quasigroup structure on the cube of the underlying set of the quasigroup. It serves to reduce homotopies to homomorphisms. An alternative semisymmetrization on the square of the underlying set was recently introduced by A. Krapež and Z. Petrić. Their construction in fact yields a Mendelsohn quasigroup, which is idempotent as well as semisymmetric. We describe it as the Mendelsohnization of the original quasigroup. For quasigroups isotopic to an abelian group, the relation between the semisymmetrization and the Mendelsohnization is studied. It is shown that the semisymmetrization is the total space for an action of the Mendelsohnization on the abelian group. The Mendelsohnization of an abelian group isotope is then identified as the idempotent replica of its semisymmetrization, with fibers isomorphic to the abelian group. (English)
Keyword: semisymmetric
Keyword: quasigroup
Keyword: Mendelsohn triple system
MSC: 20N05
idZBL: Zbl 07332729
idMR: MR4230960
DOI: 10.14712/1213-7243.2021.001
.
Date available: 2021-02-25T12:48:07Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148665
.
Reference: [1] Chernousov V., Elduque A., Knus M.-A., Tignol J.-P.: Algebraic groups of type $D_4$, triality, and composition algebras.Doc. Math. 18 (2013), 413–468. MR 3084556
Reference: [2] Colbourn C. J., Rosa A.: Triple Systems.Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Zbl 1030.05017, MR 1843379
Reference: [3] Curtis R. T.: A classification of Howard Eve's `equihoops'.preprint, Bowdoin College, Brunswick, ME, 1979.
Reference: [4] Donovan D. M., Griggs T. S, McCourt T. S., Opršal J., Stanovský D.: Distributive and anti-distributive Mendelsohn triple systems.Canad. Math. Bull. 59 (2016), no. 1, 36–49. MR 3451896, 10.4153/CMB-2015-053-2
Reference: [5] Drápal A.: On multiplication groups of relatively free quasigroups isotopic to Abelian groups.Czechoslovak Math. J. 55 (2005), no. 1, 61–86. MR 2121656, 10.1007/s10587-005-0004-2
Reference: [6] Goračinova-Ilieva L., Markovski S.: Construction of Mendelsohn designs by using quasigroups of $(2,q)$-varieties.Comment. Math. Univ. Carolin. 57 (2016), no. 4, 501–514. MR 3583302
Reference: [7] Holshouser A., Klein B., Reiter H.: The commutative equihoop and the card game SET.Pi Mu Epsilon J. 14 (2015), no. 3, 175-–190. MR 3445104
Reference: [8] Im B., Ko H.-J., Smith J. D. H.: Semisymmetrizations of abelian group isotopes.Taiwanese J. Math. 11 (2007), no. 5, 1529–1534. MR 2368669, 10.11650/twjm/1500404884
Reference: [9] Im B., Nowak A. W., Smith J. D. H.: Algebraic properties of quantum quasigroups.J. Pure Appl. Algebra 225 (2021), no. 3, 106539, 35 pages. MR 4137718, 10.1016/j.jpaa.2020.106539
Reference: [10] Jacobson N.: Lie Algebras.Interscience Tracts in Pure and Applied Mathematics, 10, Interscience Publishers (a division of John Wiley & Sons), New York, 1962. Zbl 0333.17009, MR 0143793
Reference: [11] Ježek J., Kepka T.: Quasigroups, isotopic to a group.Comment. Math. Univ. Carolinae 16 (1975), 59–-76. MR 0367103
Reference: [12] Krapež A., Petrić Z.: A note on semisymmetry.Quasigroups Related Systems 25 (2017), no. 2, 269–278. MR 3738007
Reference: [13] MacLane S.: Categories for the Working Mathematician.Graduate Texts in Mathematics, 5, Springer, New York, 1971. Zbl 0705.18001, MR 0354798
Reference: [14] Mal'cev A. I.: Multiplication of classes of algebraic systems.Sibirsk. Mat. Ž. 8 (1967), 346–365 (Russian); translated in Siberian Math. J. 8 (1967), 54–-267; The metamathematics of algebraic systems. Collected papers: 1936–1967; translated by B. F. Wells, III., Studies in Logic and the Foundations of Mathematics, 66, North-Holland Publishing, Amsterdam, 1971, pages 422-–446. MR 0213276
Reference: [15] Mendelsohn N. S.: A natural generalization of Steiner triple systems.Computers in number theory, Proc. Sci. Res. Council Atlas Sympos., No. 2, Oxford, 1969, Academic Press, London, 1971, pages 323–338. MR 0321755
Reference: [16] Nowak A.: Distributive Mendelsohn triple systems and the Eisenstein integers.available at arXiv: 1908.04966 [math.CO] (2019), 30 pages. MR 4158514
Reference: [17] Okubo S.: Introduction to Octonion and Other Non-Associative Algebras in Physics.Montroll Memorial Lecture Series in Mathematical Physics, 2, Cambridge University Press, Cambridge, 1995. MR 1356224
Reference: [18] Okubo S., Osborn J. M.: Algebras with nondegenerate associative symmetric bilinear forms permitting composition.Comm. Algebra 9 (1981), no. 12, 1233–1261. MR 0618901, 10.1080/00927878108822644
Reference: [19] Paige L. J.: A class of simple Moufang loops.Proc. Amer. Math. Soc. 7 (1956), 471–482. Zbl 0070.25302, MR 0079596, 10.1090/S0002-9939-1956-0079596-1
Reference: [20] Petersson H. P.: Eine Identität fünften Grades, der gewisse Isotope von Kompositions-Algebren genügen.Math. Z. 109 (1969), 217–238 (German). MR 0242910, 10.1007/BF01111407
Reference: [21] Romanowska A. B., Smith J. D. H.: Modal Theory: An Algebraic Approach to Order, Geomtery, and Convexity.Research and Exposition in Mathematics, 9, Heldermann, Berlin, 1985. MR 0788695
Reference: [22] Romanowska A. B., Smith J. D. H.: Modes.World Scientific Publishing Co., River Edge, 2002. Zbl 1060.08009, MR 1932199
Reference: [23] Shcherbacov V.: Elements of Quasigroup Theory and Applications.Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2017. MR 3644366
Reference: [24] Smith J. D. H.: Mal'cev Varieties.Lecture Notes in Mathematics, 554, Springer, Berlin, 1976. Zbl 0344.08002, MR 0432511, 10.1007/BFb0095447
Reference: [25] Smith J. D. H.: Homotopy and semisymmetry of quasigroups.Algebra Universalis 38 (1997), no. 2, 175–184. MR 1608968, 10.1007/s000120050046
Reference: [26] Smith J. D. H.: An Introduction to Quasigroups and Their Representations.Studies in Advanced Mathematics, Chapman and Hall/CRC, Boca Raton, 2007. Zbl 1122.20035, MR 2268350
Reference: [27] Smith J. D. H.: Four lectures on quasigroup representations.Quasigroups Related Systems 15 (2007), no. 1, 109–140. MR 2379128
Reference: [28] Smith J. D. H.: Evans' normal form theorem revisited.Internat. J. Algebra Comput. 17 (2007), no. 8, 1577–1592. MR 2378053
Reference: [29] Smith J. D. H.: Quasigroup homotopies, semisymmetrization, and reversible automata.Internat. J. Algebra Comput. 18 (2008), no. 7, 1203–1221. MR 2468744, 10.1142/S0218196708004846
Reference: [30] Smith J. D. H., Romanowska A. B.: Post-Modern Algebra.Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, New York, 1999. Zbl 0946.00001, MR 1673047
Reference: [31] Smith J. D. H., Vojtěchovský P.: Okubo quasigroups.preprint, 2019.
Reference: [32] Soublin J.-P.: Médiations.C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A115-–A117 (French). MR 0200374
Reference: [33] Stein S. K.: On the foundations of quasigroups.Trans. Amer. Math. Soc. 85 (1957), 228-–256. MR 0094404, 10.1090/S0002-9947-1957-0094404-6
Reference: [34] Zorn M.: Alternativkörper und quadratische Systeme.Abh. Math. Sem. Univ. Hamburg 9 (1933), 395–402 (German). MR 3069613, 10.1007/BF02940661
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-4_12.pdf 236.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo