Previous |  Up |  Next

Article

MSC: 53C20, 53C22, 58E20
Keywords:
Riemannian geometry; Harmonic maps; Biharmonic maps
Summary:
We construct biharmonic non-harmonic maps between Riemannian manifolds $(M,g)$ and $(N,h)$ by first making the ansatz that $\varphi \colon (M,g) \rightarrow (N,h)$ be a harmonic map and then deforming the metric on $N$ by $$\tilde {h}_{\alpha }=\alpha h+(1-\alpha )df\otimes df$$ to render $\varphi $ biharmonic, where $f$ is a smooth function with gradient of constant norm on $(N,h)$ and $\alpha \in (0,1)$. We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.
References:
[1] Baird, P., Fardoun, A., Ouakkas, S.: Conformal and semi-conformal biharmonic maps. Annals of Global Analysis and Geometry, 34, 4, 2008, 403-414, Springer, DOI 10.1007/s10455-008-9118-8 | MR 2447908
[2] Baird, P., Kamissoko, D.: On constructing biharmonic maps and metrics. Annals of Global Analysis and Geometry, 23, 1, 2003, 65-75, Springer, DOI 10.1023/A:1021213930520 | MR 1952859
[3] Baird, P., Wood, J.C.: Harmonic morphisms between Riemannian manifolds. 29, 2003, Oxford University Press, MR 2044031
[4] Benkartab, A., Cherif, A.M.: New methods of construction for biharmonic maps. Kyungpook Mathematical Journal, 59, 1, 2019, 135-147, Department of Mathematics, Kyungpook National University, MR 3946694
[5] Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of $\mathbb {S}^{3}$. International Journal of Mathematics, 12, 08, 2001, 867-876, World Scientific, MR 1863283
[6] Eells, J., Lemaire, L.: A report on harmonic maps. Bulletin of the London Mathematical Society, 10, 1, 1978, 1-68, Citeseer, DOI 10.1112/blms/10.1.1 | MR 0495450 | Zbl 0401.58003
[7] Eells, J., Lemaire, L.: Another report on harmonic maps. Bulletin of the London Mathematical Society, 20, 5, 1988, 385-524, Oxford University Press, DOI 10.1112/blms/20.5.385 | MR 0956352 | Zbl 0669.58009
[8] Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. American Journal of Mathematics, 86, 1, 1964, 109-160, JSTOR, DOI 10.2307/2373037 | MR 0164306 | Zbl 0122.40102
[9] K{ö}rpinar, T., Turhan, E.: Tubular surfaces around timelike biharmonic curves in Lorentzian Heisenberg group $\operatorname {Heis}^3$. Analele Universitatii ``Ovidius" Constanta -- Seria Matematica, 20, 1, 2012, 431-446, Sciendo, MR 2928433
[10] Oniciuc, C.: New examples of biharmonic maps in spheres. Colloquium Mathematicum, 97, 1, 2003, 131-139, DOI 10.4064/cm97-1-12 | MR 2010548
[11] Ouakkas, S.: Biharmonic maps, conformal deformations and the Hopf maps. Differential Geometry and its Applications, 26, 5, 2008, 495-502, Elsevier, DOI 10.1016/j.difgeo.2008.04.006 | MR 2458275
[12] Jiang, G.Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A, 7, 4, 1986, 389-402, MR 0886529
[13] O'Neill, B.: Semi-Riemannian geometry with applications to relativity. 1983, Academic Press, MR 0719023
[14] Sakai, T.: Riemannian geometry. 1992, Shokabo, Tokyo, (in Japanese). MR 1390760
Partner of
EuDML logo