[1] Baird, P., Fardoun, A., Ouakkas, S.:
Conformal and semi-conformal biharmonic maps. Annals of Global Analysis and Geometry, 34, 4, 2008, 403-414, Springer,
DOI 10.1007/s10455-008-9118-8 |
MR 2447908
[2] Baird, P., Kamissoko, D.:
On constructing biharmonic maps and metrics. Annals of Global Analysis and Geometry, 23, 1, 2003, 65-75, Springer,
DOI 10.1023/A:1021213930520 |
MR 1952859
[3] Baird, P., Wood, J.C.:
Harmonic morphisms between Riemannian manifolds. 29, 2003, Oxford University Press,
MR 2044031
[4] Benkartab, A., Cherif, A.M.:
New methods of construction for biharmonic maps. Kyungpook Mathematical Journal, 59, 1, 2019, 135-147, Department of Mathematics, Kyungpook National University,
MR 3946694
[5] Caddeo, R., Montaldo, S., Oniciuc, C.:
Biharmonic submanifolds of $\mathbb {S}^{3}$. International Journal of Mathematics, 12, 08, 2001, 867-876, World Scientific,
MR 1863283
[9] K{ö}rpinar, T., Turhan, E.:
Tubular surfaces around timelike biharmonic curves in Lorentzian Heisenberg group $\operatorname {Heis}^3$. Analele Universitatii ``Ovidius" Constanta -- Seria Matematica, 20, 1, 2012, 431-446, Sciendo,
MR 2928433
[12] Jiang, G.Y.:
2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A, 7, 4, 1986, 389-402,
MR 0886529
[13] O'Neill, B.:
Semi-Riemannian geometry with applications to relativity. 1983, Academic Press,
MR 0719023
[14] Sakai, T.:
Riemannian geometry. 1992, Shokabo, Tokyo, (in Japanese).
MR 1390760