Title:
|
Deformations of Metrics and Biharmonic Maps (English) |
Author:
|
Benkartab, Aicha |
Author:
|
Cherif, Ahmed Mohammed |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 (print) |
ISSN:
|
2336-1298 (online) |
Volume:
|
28 |
Issue:
|
3 |
Year:
|
2020 |
Pages:
|
263-275 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We construct biharmonic non-harmonic maps between Riemannian manifolds $(M,g)$ and $(N,h)$ by first making the ansatz that $\varphi \colon (M,g) \rightarrow (N,h)$ be a harmonic map and then deforming the metric on $N$ by $$\tilde {h}_{\alpha }=\alpha h+(1-\alpha )df\otimes df$$ to render $\varphi $ biharmonic, where $f$ is a smooth function with gradient of constant norm on $(N,h)$ and $\alpha \in (0,1)$. We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds. (English) |
Keyword:
|
Riemannian geometry |
Keyword:
|
Harmonic maps |
Keyword:
|
Biharmonic maps |
MSC:
|
53C20 |
MSC:
|
53C22 |
MSC:
|
58E20 |
idZBL:
|
Zbl 1480.53051 |
idMR:
|
MR4197078 |
. |
Date available:
|
2021-03-03T08:56:33Z |
Last updated:
|
2022-04-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148707 |
. |
Reference:
|
[1] Baird, P., Fardoun, A., Ouakkas, S.: Conformal and semi-conformal biharmonic maps.Annals of Global Analysis and Geometry, 34, 4, 2008, 403-414, Springer, MR 2447908, 10.1007/s10455-008-9118-8 |
Reference:
|
[2] Baird, P., Kamissoko, D.: On constructing biharmonic maps and metrics.Annals of Global Analysis and Geometry, 23, 1, 2003, 65-75, Springer, MR 1952859, 10.1023/A:1021213930520 |
Reference:
|
[3] Baird, P., Wood, J.C.: Harmonic morphisms between Riemannian manifolds.29, 2003, Oxford University Press, MR 2044031 |
Reference:
|
[4] Benkartab, A., Cherif, A.M.: New methods of construction for biharmonic maps.Kyungpook Mathematical Journal, 59, 1, 2019, 135-147, Department of Mathematics, Kyungpook National University, MR 3946694 |
Reference:
|
[5] Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of $\mathbb {S}^{3}$.International Journal of Mathematics, 12, 08, 2001, 867-876, World Scientific, MR 1863283 |
Reference:
|
[6] Eells, J., Lemaire, L.: A report on harmonic maps.Bulletin of the London Mathematical Society, 10, 1, 1978, 1-68, Citeseer, Zbl 0401.58003, MR 0495450, 10.1112/blms/10.1.1 |
Reference:
|
[7] Eells, J., Lemaire, L.: Another report on harmonic maps.Bulletin of the London Mathematical Society, 20, 5, 1988, 385-524, Oxford University Press, Zbl 0669.58009, MR 0956352, 10.1112/blms/20.5.385 |
Reference:
|
[8] Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds.American Journal of Mathematics, 86, 1, 1964, 109-160, JSTOR, Zbl 0122.40102, MR 0164306, 10.2307/2373037 |
Reference:
|
[9] K{ö}rpinar, T., Turhan, E.: Tubular surfaces around timelike biharmonic curves in Lorentzian Heisenberg group $\operatorname {Heis}^3$.Analele Universitatii ``Ovidius" Constanta -- Seria Matematica, 20, 1, 2012, 431-446, Sciendo, MR 2928433 |
Reference:
|
[10] Oniciuc, C.: New examples of biharmonic maps in spheres.Colloquium Mathematicum, 97, 1, 2003, 131-139, MR 2010548, 10.4064/cm97-1-12 |
Reference:
|
[11] Ouakkas, S.: Biharmonic maps, conformal deformations and the Hopf maps.Differential Geometry and its Applications, 26, 5, 2008, 495-502, Elsevier, MR 2458275, 10.1016/j.difgeo.2008.04.006 |
Reference:
|
[12] Jiang, G.Y.: 2-harmonic maps and their first and second variational formulas.Chinese Ann. Math. Ser. A, 7, 4, 1986, 389-402, MR 0886529 |
Reference:
|
[13] O'Neill, B.: Semi-Riemannian geometry with applications to relativity.1983, Academic Press, MR 0719023 |
Reference:
|
[14] Sakai, T.: Riemannian geometry.1992, Shokabo, Tokyo, (in Japanese). MR 1390760 |
. |