Previous |  Up |  Next

Article

MSC: 20D60
Keywords:
finite group; prime graph
Summary:
In this paper we consider a prime graph of finite groups. In particular, we expect finite groups with prime graphs of maximal diameter.
References:
[1] Gruber, A., Keller, T.M., Lewis, M.L., Naughton, K., Strasser, B.: A characterization of the prime graphs of solvable groups. Journal of Algebra, 442, 2015, 397-422, Elsevier, DOI 10.1016/j.jalgebra.2014.08.040 | MR 3395066
[2] Kondrat'ev, A.S.: Prime graph components of finite simple groups. Matematicheskii Sbornik, 180, 6, 1989, 787-797, Russian Academy of Sciences, English transl. Math. USSR-Sb. 67 (1990), 235--247.. MR 1015040 | Zbl 0691.20013
[3] Lucido, M.S.: The diameter of the prime graph of a finite group. Journal of Group Theory, 2, 2, 1999, 157-172, De Gruyter, MR 1681526
[4] Vasil'ev, A.V.: On connection between the structure of a finite group and the properties of its prime graph. Siberian Mathematical Journal, 46, 3, 2005, 396-404, Springer, DOI 10.1007/s11202-005-0042-x
[5] Vasil'ev, A.V.: On finite groups isospectral to simple classical groups. Journal of Algebra, 423, 2015, 318-374, Elsevier, DOI 10.1016/j.jalgebra.2014.10.013 | MR 3283720
[6] Williams, J.S.: The prime graph components of finite groups. Journal of Algebra, 69, 2, 1981, 487-513, DOI 10.1016/0021-8693(81)90218-0 | MR 0617092
[7] Yang, N., Grechkoseeva, M.A., Vasil'ev, A.V.: On the nilpotency of the solvable radical of a finite group isospectral to a simple group. Journal of Group Theory, 23, 3, 2020, 447-470, De Gruyter, MR 4092939
Partner of
EuDML logo