Title:
|
On the $2$-class group of some number fields with large degree (English) |
Author:
|
Chems-Eddin, Mohamed Mahmoud |
Author:
|
Azizi, Abdelmalek |
Author:
|
Zekhnini, Abdelkader |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
57 |
Issue:
|
1 |
Year:
|
2021 |
Pages:
|
13-26 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $d$ be an odd square-free integer, $m\ge 3$ any integer and $L_{m, d}:=\mathbb{Q}(\zeta _{2^m},\sqrt{d})$. In this paper, we shall determine all the fields $L_{m, d}$ having an odd class number. Furthermore, using the cyclotomic $\mathbb{Z}_2$-extensions of some number fields, we compute the rank of the $2$-class group of $L_{m, d}$ whenever the prime divisors of $d$ are congruent to $3$ or $5\pmod 8$. (English) |
Keyword:
|
cyclotomic $\mathbb{Z}_2$-extension |
Keyword:
|
$2$-rank |
Keyword:
|
$2$-class group |
MSC:
|
11R11 |
MSC:
|
11R23 |
MSC:
|
11R29 |
MSC:
|
11R32 |
idZBL:
|
Zbl 07332701 |
idMR:
|
MR4260837 |
DOI:
|
10.5817/AM2021-1-13 |
. |
Date available:
|
2021-03-05T10:31:38Z |
Last updated:
|
2021-11-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148715 |
. |
Reference:
|
[1] Azizi, A., Chems-Eddin, M.M., Zekhnini, A.: On the rank of the $2$-class group of some imaginary triquadratic number fields.Rend. Circ. Mat. Palermo, II Ser. (2019), 19 pp., https://doi.org/10.1007/s12215-020-00589-0. 10.1007/s12215-020-00589-0 |
Reference:
|
[2] Azizi, A., Zekhnini, A., Taous, M.: On the strongly ambiguous classes of some biquadratic number fields.Math. Bohem. 14 (2016), 363–384. MR 3557585, 10.21136/MB.2016.0022-14 |
Reference:
|
[3] Chems-Eddin, M.M., Müller, K.: $2$-class groups of cyclotomic towers of imaginary biquadratic fields and applications.Accepted for publication in Int. J. Number Theory, arXiv:2002.03602. |
Reference:
|
[4] Connor, P.E., Hurrelbrink, J.: Class number parity.Series in Pure Mathematics, World Scientific, 1988. MR 0963648 |
Reference:
|
[5] Fukuda, T.: Remarks on $\mathbb{Z}_p$-extensions of number fields.Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 264–266. MR 1303577, 10.3792/pjaa.70.264 |
Reference:
|
[6] Gras, G.: Sur les l-classes d’idéaux dans les extensions cycliques relatives de degré premier l.Ann. Inst. Fourier (Grenoble) 23 (1973), 1–48. MR 0360519, 10.5802/aif.480 |
Reference:
|
[7] Hilbert, D.: Über die Theorie des relativquadratischen Zahlkörpers.Math. Annal. 51 (1898), 1–127. 10.1007/BF01905120 |
Reference:
|
[8] Hubbard, D., Washington, L.C.: Iwasawa Invariants of some non-cyclotomic $\mathbb{Z}$-extensions.arXiv:1703.06550. MR 3778621 |
Reference:
|
[9] Lemmermeyer, F.: Kuroda’s class number formula.Acta Arith. 66 (1994), 245–260. Zbl 0807.11052, MR 1276992, 10.4064/aa-66-3-245-260 |
Reference:
|
[10] Li, J., Ouyang, Y., Xu, Y., Zhang, S.: $l$-class groups of fields in Kummer towers.arXiv:1905.04966. |
Reference:
|
[11] Masley, J.M., Montgomery, H.L.: Cyclotomic fields with unique factorization.J. Reine Angew. Math. 286/287 (1976), 248–256. MR 0429824 |
Reference:
|
[12] McCall, T.M., Parry, C.J., Ranalli, R.R.: Imaginary bicyclic biquadratic fields with cyclic $2$-class group.J. Number Theory 53 (1995), 88–99. MR 1344833, 10.1006/jnth.1995.1079 |
Reference:
|
[13] Mouhib, A., Movahhedi, A.: Cyclicity of the unramified Iwasawa module.Manuscripta Math. 135 (2011), 91–106. MR 2783388, 10.1007/s00229-010-0407-8 |
Reference:
|
[14] Washington, L.C.: Introduction to cyclotomic fields.Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, second ed., 1997. MR 1421575 |
. |