Previous |  Up |  Next

Article

Title: On the $2$-class group of some number fields with large degree (English)
Author: Chems-Eddin, Mohamed Mahmoud
Author: Azizi, Abdelmalek
Author: Zekhnini, Abdelkader
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 57
Issue: 1
Year: 2021
Pages: 13-26
Summary lang: English
.
Category: math
.
Summary: Let $d$ be an odd square-free integer, $m\ge 3$ any integer and $L_{m, d}:=\mathbb{Q}(\zeta _{2^m},\sqrt{d})$. In this paper, we shall determine all the fields $L_{m, d}$ having an odd class number. Furthermore, using the cyclotomic $\mathbb{Z}_2$-extensions of some number fields, we compute the rank of the $2$-class group of $L_{m, d}$ whenever the prime divisors of $d$ are congruent to $3$ or $5\pmod 8$. (English)
Keyword: cyclotomic $\mathbb{Z}_2$-extension
Keyword: $2$-rank
Keyword: $2$-class group
MSC: 11R11
MSC: 11R23
MSC: 11R29
MSC: 11R32
idZBL: Zbl 07332701
idMR: MR4260837
DOI: 10.5817/AM2021-1-13
.
Date available: 2021-03-05T10:31:38Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148715
.
Reference: [1] Azizi, A., Chems-Eddin, M.M., Zekhnini, A.: On the rank of the $2$-class group of some imaginary triquadratic number fields.Rend. Circ. Mat. Palermo, II Ser. (2019), 19 pp., https://doi.org/10.1007/s12215-020-00589-0. 10.1007/s12215-020-00589-0
Reference: [2] Azizi, A., Zekhnini, A., Taous, M.: On the strongly ambiguous classes of some biquadratic number fields.Math. Bohem. 14 (2016), 363–384. MR 3557585, 10.21136/MB.2016.0022-14
Reference: [3] Chems-Eddin, M.M., Müller, K.: $2$-class groups of cyclotomic towers of imaginary biquadratic fields and applications.Accepted for publication in Int. J. Number Theory, arXiv:2002.03602.
Reference: [4] Connor, P.E., Hurrelbrink, J.: Class number parity.Series in Pure Mathematics, World Scientific, 1988. MR 0963648
Reference: [5] Fukuda, T.: Remarks on $\mathbb{Z}_p$-extensions of number fields.Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 264–266. MR 1303577, 10.3792/pjaa.70.264
Reference: [6] Gras, G.: Sur les l-classes d’idéaux dans les extensions cycliques relatives de degré premier l.Ann. Inst. Fourier (Grenoble) 23 (1973), 1–48. MR 0360519, 10.5802/aif.480
Reference: [7] Hilbert, D.: Über die Theorie des relativquadratischen Zahlkörpers.Math. Annal. 51 (1898), 1–127. 10.1007/BF01905120
Reference: [8] Hubbard, D., Washington, L.C.: Iwasawa Invariants of some non-cyclotomic $\mathbb{Z}$-extensions.arXiv:1703.06550. MR 3778621
Reference: [9] Lemmermeyer, F.: Kuroda’s class number formula.Acta Arith. 66 (1994), 245–260. Zbl 0807.11052, MR 1276992, 10.4064/aa-66-3-245-260
Reference: [10] Li, J., Ouyang, Y., Xu, Y., Zhang, S.: $l$-class groups of fields in Kummer towers.arXiv:1905.04966.
Reference: [11] Masley, J.M., Montgomery, H.L.: Cyclotomic fields with unique factorization.J. Reine Angew. Math. 286/287 (1976), 248–256. MR 0429824
Reference: [12] McCall, T.M., Parry, C.J., Ranalli, R.R.: Imaginary bicyclic biquadratic fields with cyclic $2$-class group.J. Number Theory 53 (1995), 88–99. MR 1344833, 10.1006/jnth.1995.1079
Reference: [13] Mouhib, A., Movahhedi, A.: Cyclicity of the unramified Iwasawa module.Manuscripta Math. 135 (2011), 91–106. MR 2783388, 10.1007/s00229-010-0407-8
Reference: [14] Washington, L.C.: Introduction to cyclotomic fields.Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, second ed., 1997. MR 1421575
.

Files

Files Size Format View
ArchMathRetro_057-2021-1_2.pdf 502.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo