Previous |  Up |  Next

Article

Title: Characterization by intersection graph of some families of finite nonsimple groups (English)
Author: Shahsavari, Hossein
Author: Khosravi, Behrooz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 1
Year: 2021
Pages: 191-209
Summary lang: English
.
Category: math
.
Summary: For a finite group $G$, $\Gamma (G)$, the intersection graph of $G$, is a simple graph whose vertices are all nontrivial proper subgroups of $G$ and two distinct vertices $H$ and $K$ are adjacent when $H\cap K\neq 1$. In this paper, we classify all finite nonsimple groups whose intersection graphs have a leaf and also we discuss the characterizability of them using their intersection graphs. (English)
Keyword: intersection graph
Keyword: leaf
Keyword: nonsimple group
Keyword: characterization
MSC: 05C25
MSC: 20D99
idZBL: 07332712
idMR: MR4226477
DOI: 10.21136/CMJ.2020.0250-19
.
Date available: 2021-03-12T16:13:02Z
Last updated: 2023-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148735
.
Reference: [1] Akbari, S., Heydari, F., Maghasedi, M.: The intersection graph of a group.J. Algebra Appl. 14 (2015), Article ID 1550065, 9 pages. Zbl 1309.05090, MR 3323326, 10.1142/S0219498815500656
Reference: [2] Csákány, B., Pollák, G.: The graph of subgroups of a finite group.Czech. Math. J. 19 (1969), 241-247 Russian. Zbl 0218.20019, MR 0249328, 10.21136/CMJ.1969.100891
Reference: [3] Glasby, S. P., Pálfy, P. P., Schneider, C.: $p$-groups with a unique proper non-trivial characteristic subgroup.J. Algebra 348 (2011), 85-109. Zbl 1252.20014, MR 2852233, 10.1016/j.jalgebra.2011.10.005
Reference: [4] Kayacan, S.: $K_{3,3}$-free intersection graphs of finite groups.Commun. Algebra 45 (2017), 2466-2477. Zbl 1388.20035, MR 3594532, 10.1080/00927872.2016.1233209
Reference: [5] Kayacan, S., Yaraneri, E.: Abelian groups with isomorphic intersection graphs.Acta Math. Hung. 146 (2015), 107-127. Zbl 1374.20047, MR 3348183, 10.1007/s10474-015-0486-9
Reference: [6] Kayacan, S., Yaraneri, E.: Finite groups whose intersection graphs are planar.J. Korean Math. Soc. 52 (2015), 81-96. Zbl 1314.20016, MR 3299371, 10.4134/JKMS.2015.52.1.081
Reference: [7] Shahsavari, H., Khosravi, B.: On the intersection graph of a finite group.Czech. Math. J. 67 (2017), 1145-1153. Zbl 06819578, MR 3736024, 10.21136/CMJ.2017.0446-16
Reference: [8] Shahsavari, H., Khosravi, B.: Characterization of some families of simple groups by their intersection graphs.Commun. Algebra 48 (2020), 1266-1280. Zbl 1435.05104, MR 4079532, 10.1080/00927872.2019.1682151
Reference: [9] Shen, R.: Intersection graphs of subgroups of finite groups.Czech. Math. J. 60 (2010), 945-950. Zbl 1208.20022, MR 2738958, 10.1007/s10587-010-0085-4
Reference: [10] Taunt, D. R.: Finite groups having unique proper characteristic subgroups. I.Proc. Camb. Philos. Soc. 51 (1955), 25-36. Zbl 0064.02402, MR 0067886, 10.1017/S0305004100029881
Reference: [11] Zelinka, B.: Intersection graphs of finite Abelian groups.Czech. Math. J. 25 (1975), 171-174. Zbl 0311.05119, MR 0372075, 10.21136/CMJ.1975.101307
.

Files

Files Size Format View
CzechMathJ_71-2021-1_9.pdf 390.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo