Previous |  Up |  Next

Article

Title: On the Finsler geometry of the Heisenberg group $H_{2n+1}$ and its extension (English)
Author: Nasehi, Mehri
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 57
Issue: 2
Year: 2021
Pages: 101-111
Summary lang: English
.
Category: math
.
Summary: We first classify left invariant Douglas $(\alpha , \beta )$-metrics on the Heisenberg group $H_{2n+1}$ of dimension $2n + 1$ and its extension i.e., oscillator group. Then we explicitly give the flag curvature formulas and geodesic vectors for these spaces, when equipped with these metrics. We also explicitly obtain $S$-curvature formulas of left invariant Randers metrics of Douglas type on these spaces and obtain a comparison on geometry of these spaces, when equipped with left invariant Douglas $(\alpha , \beta )$-metrics. More exactly, we show that although the results concerning bi-invariant Douglas $(\alpha ,\beta )$-metrics on these spaces are similar, several results concerning left invariant Douglas $(\alpha ,\beta )$-metrics on these spaces are different. For example we prove that the existence of left-invariant Matsumoto, Kropina and Randers metrics of Berwald type on oscillator groups can not extend to Heisenberg groups. Also we prove that oscillator groups have always vanishing $S$-curvature, whereas this can not occur on Heisenberg groups. Moreover, we prove that there exist new geodesic vectors on oscillator groups which can not extend to the Heisenberg groups. (English)
Keyword: Heisenberg groups
Keyword: oscillator groups
Keyword: left-invariant Douglas $(\alpha ,\beta )$-metrics
MSC: 53C30
MSC: 53C60
idZBL: Zbl 07361068
idMR: MR4306171
DOI: 10.5817/AM2021-2-101
.
Date available: 2021-05-11T14:25:06Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148893
.
Reference: [1] Aradi, B.: Left invariant Finsler manifolds are generalized Berwald.Eur. J. Pure Appl. Math. 8 (2015), 118–125. MR 3313971
Reference: [2] Arnold, V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluides parfaits.Ann. Inst. Fourier (Grenoble) 16 (1) (1966), 319–361. MR 0202082, 10.5802/aif.233
Reference: [3] Bacso, S., Cheng, X., Shen, Z.: Curvature properties of $(\alpha ,\beta )$-metrics.Finsler Geometry, Sapporo 2005, Adv. Stud. Pure Math., vol. 48, 2007, pp. 73–110. MR 2389252
Reference: [4] Berndt, J., Tricceri, F., Vanhecke, L.: Generalized Heisenberg Groups and Damek Ricci Harmonic Spaces.Lecture Notes in Math., vol. 1598, Springer, Heidelberg, 1995. MR 1340192
Reference: [5] Biggs, R., Remsing, C.C.: Some remarks on the oscillator group.Differential Geom. Appl. 35 (2014), 199–209. MR 3254303, 10.1016/j.difgeo.2014.03.003
Reference: [6] Chern, S.S., Shen, Z.: Riemann-Finsler geometry.World Scientific, Singapore, 2005. MR 2169595
Reference: [7] Deng, S.: The S-curvature of homogeneous Randers spaces.Differential Geom. Appl. 27 (2010), 75–84. MR 2488989, 10.1016/j.difgeo.2008.06.007
Reference: [8] Deng, S.: Homogeneous Finsler spaces.Springer, New York, 2012. MR 2962626
Reference: [9] Deng, S., Hosseini, M., Liu, H., Salimi Moghaddam, H.R.: On the left invariant $(\alpha ,\beta )$-metrics on some Lie groups.to appear in Houston Journal of Mathematics. MR 4102870
Reference: [10] Deng, S., Hou, Z.: Invariant Randers metrics on homogeneous Riemannian manifolds.J. Phys. A Math. Gen. 37 (2004), 4353–4360. Zbl 1049.83005, MR 2063598, 10.1088/0305-4470/37/15/004
Reference: [11] Deng, S., Hu, Z.: On flag curvature of homogeneous Randers spaces.Canad. J. Math. 65 (2013), 66–81. MR 3004458, 10.4153/CJM-2012-004-6
Reference: [12] Fasihi-Ramandi, Gh., Azami, S.: Geometry of left invariant Randers metric on the Heisenberg group.submitted.
Reference: [13] Gadea, P.M., Oubina, J.A.: Homogeneous Lorentzian structures on the oscillator groups.Arch. Math. (Basel) 73 (1999), 311–320. MR 1710084, 10.1007/s000130050403
Reference: [14] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics.Boll. Un. Mat. Ital. B (7) 5 (1) (1991), 189–246. Zbl 0731.53046, MR 1110676
Reference: [15] Latifi, D.: Bi-invariant Randers metrics on Lie groups.Publ. Math. Debrecen 76 (1–2) (2010), 219–226. MR 2598183
Reference: [16] Lengyelné Tóth, A., Kovács, Z.: Left invariant Randers metrics on the 3-dimensional Heisenberg group.Publ. Math. Debrecen 85 (1–2) (2014), 161–179. MR 3231513, 10.5486/PMD.2014.5894
Reference: [17] Lengyelné Tóth, A., Kovács, Z.: Curvatures of left invariant Randers metric on the five-dimensional Heisenberg group.Balkan J. Geom. Appl. 22 (1) (2017), 33–40. MR 3678008
Reference: [18] Liu, H., Deng, S.: Homogeneous $(\alpha ,\beta )$-metrics of Douglas type.Forum Math. (2014), 1–17. MR 3393392
Reference: [19] Milnor, J.: Curvatures of left-invariant metrics on Lie groups.Adv. Math. 21 (3) (1976), 293–329. MR 0425012, 10.1016/S0001-8708(76)80002-3
Reference: [20] Nasehi, M.: On 5-dimensional 2-step homogeneous Randers nilmanifolds of Douglas type.Bull. Iranian Math. Soc. 43 (2017), 695–706. MR 3670890
Reference: [21] Nasehi, M.: On the Geometry of Higher Dimensional Heisenberg Groups.Mediterr. J. Math. 29 (2019), 1–17. MR 3911142
Reference: [22] Nasehi, M., Aghasi, M.: On the geometry of Douglas Heisenberg group.48th Annual Irannian Mathematics Conference, 2017, pp. 1720–1723.
Reference: [23] Parhizkar, M., Salimi Moghaddam, H.R.: Geodesic vector fields of invariant $(\alpha ,\beta )$-metrics on homogeneous spaces.Int. Electron. J. Geom. 6 (2) (2013), 39–44. MR 3125830
Reference: [24] Rahmani, S.: Metriques de Lorentz sur les groupes de Lie unimodulaires de dimension 3.J. Geom. Phys. 9 (1992), 295–302. MR 1171140, 10.1016/0393-0440(92)90033-W
Reference: [25] Vukmirovic, S.: Classification of left-invariant metrics on the Heisenberg group.J. Geom. Phys. 94 (2015), 72–80. MR 3350270, 10.1016/j.geomphys.2015.01.005
.

Files

Files Size Format View
ArchMathRetro_057-2021-2_3.pdf 517.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo