| Title:
             | 
On some Diophantine equations involving balancing numbers (English) | 
| Author:
             | 
Tchammou, Euloge | 
| Author:
             | 
Togbé, Alain | 
| Language:
             | 
English | 
| Journal:
             | 
Archivum Mathematicum | 
| ISSN:
             | 
0044-8753 (print) | 
| ISSN:
             | 
1212-5059 (online) | 
| Volume:
             | 
57 | 
| Issue:
             | 
2 | 
| Year:
             | 
2021 | 
| Pages:
             | 
113-130 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper, we find all the solutions of the Diophantine equation $B_1^p+2B_2^p+\cdots +kB_k^p=B_n^q$ in positive integer variables $(k, n)$, where $B_i$ is the $i^{th}$ balancing number if the exponents $p$, $ q$ are included in the set $\lbrace 1,2\rbrace $. (English) | 
| Keyword:
             | 
balancing numbers | 
| Keyword:
             | 
Pell numbers | 
| Keyword:
             | 
Diophantine equation | 
| MSC:
             | 
11B39 | 
| idZBL:
             | 
Zbl 07361069 | 
| idMR:
             | 
MR4306172 | 
| DOI:
             | 
10.5817/AM2021-2-113 | 
| . | 
| Date available:
             | 
2021-05-11T14:26:51Z | 
| Last updated:
             | 
2021-11-01 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/148894 | 
| . | 
| Reference:
             | 
[1] Altassan, A., Luca, F.: On the Diophantine equation $\sum _{j=1}^{k}jF_j^p=F_n^q$.J. Number Theory 217 (2020), 256–277. MR 4140628 | 
| Reference:
             | 
[2] Behera, A., Panda, G.K.: On the square roots of triangular numbers.Fibonacci Quart. 37 (2) (1999), 98–105. MR 1690458 | 
| Reference:
             | 
[3] Catarino, P., Campos, H., Vasco, P.: On some identities for balancing and cobalancing numbers.Ann. Math. Inform. 45 (2015), 11–24. MR 3438809 | 
| Reference:
             | 
[4] Gueth, K., Luca, F., Szalay, L.: Solutions to $F_1^p+2F_2^p+\dots +kF_k^p=F_n^q$ with small given exponents.Proc. Japan Acad. Ser. A, Math. Sci. 96 (4) (2020), 33–37. MR 4080788 | 
| Reference:
             | 
[5] Horadam, A.F.: Pell identities.Fibonacci Quart. 9 (3) (1971), 245–263. MR 0308029 | 
| Reference:
             | 
[6] Niven, I., Zuckerman, H.S., Montgomery, H.L.: An Introduction to the Theory of Numbers.fifth edition ed., John Wiley & Sons, Inc., New York, 1991. MR 1083765 | 
| Reference:
             | 
[7] Olajos, P.: Properties of Balancing, Cobalancing and Generalized Balancing Numbers.Ann. Math. Inform. 37 (2010), 125–138. MR 2753032 | 
| Reference:
             | 
[8] Panda, G.K.: Some Fascinating Properties of Balancing Numbers.Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, Cong. Numer., vol. 194, 2009, pp. 185–189. MR 2463534 | 
| Reference:
             | 
[9] Panda, G.K., Ray, P.K.: Some links of balancing and cobalancing numbers with Pell and associated Pell numbers.Bul. Inst. Math. Acad. Sinica 6 (2011), 41–72. MR 2850087 | 
| Reference:
             | 
[10] Ray, P.K.: Balancing and cobalancing numbers.Ph.D. thesis, National Institute of Technology, Rourkela, India, 2009. | 
| Reference:
             | 
[11] Soydan, G., Németh, L., Szalay, L.: On the diophantine equation $\sum _{j=1}^{k}jF_j^p=F_n^q$.Arch. Math. (Brno) 54 (2008), 177–188. MR 3847324 | 
| Reference:
             | 
[12] Tchammou, E., Togbé, A.: On the diophantine equation $\sum _{j=1}^{k}jP_j^p=P_n^q$.Acta Math. Hungar. 162 (2) (2020), 647–676. MR 4173320, 10.1007/s10474-020-01043-4 | 
| . |