Previous |  Up |  Next

Article

Title: On a deformed version of the two-disk dynamo system (English)
Author: Lăzureanu, Cristian
Author: Petrişor, Camelia
Author: Hedrea, Ciprian
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 3
Year: 2021
Pages: 345-372
Summary lang: English
.
Category: math
.
Summary: We give some deformations of the Rikitake two-disk dynamo system. Particularly, we consider an integrable deformation of an integrable version of the Rikitake system. The deformed system is a three-dimensional Hamilton-Poisson system. We present two Lie-Poisson structures and also symplectic realizations. Furthermore, we give a prequantization result of one of the Poisson manifold. We study the stability of the equilibrium states and we prove the existence of periodic orbits. We analyze some properties of the energy-Casimir mapping $\mathcal {EC}$ associated to our system. In many cases the dynamical behavior of such systems is related with some geometric properties of the image of the energy-Casimir mapping. These connections were observed in the cases when the image of $\mathcal {EC}$ is a convex proper subset of $\mathbb {R}^2$. In order to point out new connections, we choose deformation functions such that Im$(\mathcal {EC})=\mathbb {R}^2.$ Using the images of the equilibrium states through the energy-Casimir mapping we give parametric equations of some special orbits, namely heteroclinic orbits, split-heteroclinic orbits, and split-homoclinic orbits. Finally, we implement the mid-point rule to perform some numerical integrations of the considered system. (English)
Keyword: integrable deformation
Keyword: Hamilton-Poisson system
Keyword: stability
Keyword: energy-Casimir mapping
Keyword: periodic orbit
Keyword: heteroclinic orbit
Keyword: mid-point rule
MSC: 70H05
MSC: 70H06
MSC: 70H12
MSC: 70H14
MSC: 70K20
MSC: 70K44
idZBL: 07361059
idMR: MR4263155
DOI: 10.21136/AM.2021.0303-19
.
Date available: 2021-05-20T13:33:29Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148898
.
Reference: [1] Adams, R. M., Biggs, R., Holderbaum, W., Remsing, C. C.: On the stability and integration of Hamilton-Poisson systems on $\frak{s}\frak{o}(3)_{-}^*$.Rend. Mat. Appl., VII. Ser. 37 (2016), 1-42. Zbl 1416.17022, MR 3622303
Reference: [2] Arnol'd, V. I.: Conditions for nonlinear stability of stationary plane curvilinear flows on an ideal fluid.Sov. Math., Dokl. 6 (1965), 773-777 translation from Dokl. Akad. Nauk SSSR 162 1965 975-978. Zbl 0141.43901, MR 0180051, 10.1007/978-3-642-31031-7_4
Reference: [3] Austin, M. A., Krishnaprasad, P. S., Wang, L.-S.: Almost Poisson integration of rigid body systems.J. Comput. Phys. 107 (1993), 105-117. Zbl 0782.70001, MR 1226376, 10.1006/jcph.1993.1128
Reference: [4] Ballesteros, Á., Blasco, A., Musso, F.: Integrable deformations of Rössler and Lorenz systems from Poisson-Lie groups.J. Differ. Equations 260 (2016), 8207-8228. Zbl 1382.37057, MR 3479208, 10.1016/j.jde.2016.02.014
Reference: [5] Barrett, D. I., Biggs, R., Remsing, C. C.: Quadratic Hamilton-Poisson systems on $\frak{s}\frak{e}(1, 1)^*$: The inhomogeneous case.Acta Appl. Math. 154 (2018), 189-230. Zbl 1411.53069, MR 3770248, 10.1007/s10440-017-0140-3
Reference: [6] Bînzar, T., Lăzureanu, C.: A Rikitake type system with one control.Discrete Contin. Dyn. Syst, Ser. B. 18 (2013), 1755-1776. Zbl 1391.70049, MR 3066320, 10.3934/dcdsb.2013.18.1755
Reference: [7] Bînzar, T., Lăzureanu, C.: On some dynamical and geometrical properties of the MaxwellBloch equations with a quadratic control.J. Geom. Phys. 70 (2013), 1-8. Zbl 1332.70026, MR 3054279, 10.1016/j.geomphys.2013.03.016
Reference: [8] Bolsinov, A. V., Borisov, A. V.: Compatible Poisson brackets on Lie algebras.Math. Notes 72 (2002), 10-30 translation from Mat. Zametki 72 2002 11-34. Zbl 1042.37041, MR 1942578, 10.1023/A:1019856702638
Reference: [9] Chillingworth, D. R. J., Holmes, P. J.: Dynamical systems and models for reversals of the earth's magnetic field.J. Internat. Assoc. Math. Geol. 12 (1980), 41-59. MR 0594011, 10.1007/BF01039903
Reference: [10] Cook, A. E., Roberts, P. H.: The Rikitake two-disc dynamo system.Proc. Camb. Philos. Soc. 68 (1970), 547-569. 10.1017/S0305004100046338
Reference: [11] Dirac, P. A. M.: The Principles of Quantum Mechanics.Oxford University Press, Oxford (1947). Zbl 0030.04801, MR 0023198
Reference: [12] Evripidou, C. A., Kassotakis, P., Vanhaecke, P.: Integrable deformations of the Bogoyavlenskij-Itoh Lotka-Volterra systems.Regul. Chaotic Dyn. 22 (2017), 721-739. Zbl 06845459, MR 3736470, 10.1134/S1560354717060090
Reference: [13] Galajinsky, A.: Remark on integrable deformations of the Euler top.J. Math. Anal. Appl. 416 (2014), 995-997. Zbl 1362.70006, MR 3188751, 10.1016/j.jmaa.2014.03.008
Reference: [14] Glatzmaier, G. A., Roberts, P. H.: A three-dimensional self-consistent computer simulation of a geomagnetic field reversal.Nature 377 (1995), 203-209. 10.1038/377203a0
Reference: [15] Hardy, Y., Steeb, W.-H.: The Rikitake two-disc dynamo system and domains with periodic orbits.Int. J. Theor. Phys. 38 (1999), 2413-2417. Zbl 0980.86005, MR 1722023, 10.1023/A:1026640221874
Reference: [16] Holm, D. D., Marsden, J. E.: The rotor and the pendulum.Symplectic Geometry and Mathematical Physics Birkhäuser, Boston (1991), 189-203. Zbl 0744.70011, MR 1156540, 10.1007/978-1-4757-2140-9_9
Reference: [17] Huang, K., Shi, S., Xu, Z.: Integrable deformations, bi-Hamiltonian structures and nonintegrability of a generalized Rikitake system.Int. J. Geom. Methods Mod. Phys. 16 (2019), Article ID 1950059, 17 pages. Zbl 1421.37026, MR 3940519, 10.1142/S0219887819500592
Reference: [18] Ito, K.: Chaos in the Rikitake two-disc dynamo system.Earth Planet. Sci. Lett. 51 (1980), 451-456. 10.1016/0012-821X(80)90224-1
Reference: [19] Ivan, M., Ivan, G.: On the fractional Euler top system with two parameters.Int. J. Modern Eng. Research 8 (2018), 10-22.
Reference: [20] Jian, X.: Anti-synchronization of uncertain Rikitake systems via active sliding mode control.Int. J. Phys. Sci. 6 (2011), 2478-2482. 10.5897/IJPS11.221
Reference: [21] Kostant, B.: Quantization and unitary representations I. Prequantization.Lectures in Modern Analysis and Applications III Lecture Notes in Mathematics 170. Springer, Berlin (1970), 87-208. Zbl 0223.53028, MR 0294568, 10.1007/BFb0079068
Reference: [22] Lăzureanu, C.: Hamilton-Poisson realizations of the integrable deformations of the Rikitake system.Adv. Math. Phys. 2017 (2017), Article ID 4596951, 9 pages. Zbl 1401.37063, MR 3696014, 10.1155/2017/4596951
Reference: [23] Lăzureanu, C.: On a Hamilton-Poisson approach of the Maxwell-Bloch equations with a control.Math. Phys. Anal. Geom. 20 (2017), Article ID 20, 22 pages. Zbl 1413.37043, MR 3683715, 10.1007/s11040-017-9251-3
Reference: [24] Lăzureanu, C.: On the Hamilton-Poisson realizations of the integrable deformations of the Maxwell-Bloch equations.C. R., Math., Acad. Sci. Paris 355 (2017), 596-600. Zbl 1366.37125, MR 3650389, 10.1016/j.crma.2017.04.002
Reference: [25] Lăzureanu, C.: Integrable deformations of three-dimensional chaotic systems.Int. J. Bifurcation Chaos Appl. Sci. Eng. 28 (2018), Article ID 1850066, 7 pages. Zbl 1392.34039, MR 3807430, 10.1142/S0218127418500669
Reference: [26] Lăzureanu, C., Bînzar, T.: A Rikitake type system with quadratic control.Int. J. Bifurcation Chaos Appl. Sci. Eng. 22 (2012), Article ID 1250274, 14 pages. Zbl 1258.34100, MR 3006345, 10.1142/S0218127412502744
Reference: [27] Lăzureanu, C., Bînzar, T.: On the symmetries of a Rikitake type system.C. R., Math., Acad. Sci. Paris 350 (2012), 529-533. Zbl 1253.34041, MR 2929062, 10.1016/j.crma.2012.04.016
Reference: [28] Lăzureanu, C., Petrişor, C.: Stability and energy-Casimir mapping for integrable deformations of the Kermack-McKendrick system.Adv. Math. Phys. 2018 (2018), Article ID 5398768, 9 pages. Zbl 1419.37056, MR 3816095, 10.1155/2018/5398768
Reference: [29] Libermann, P., Marle, C.-M.: Symplectic Geometry and Analytical Mechanics.Mathematics and Its Applications 35. D. Reidel, Dordrecht (1987). Zbl 0643.53002, MR 0882548, 10.1007/978-94-009-3807-6
Reference: [30] Llibre, J., Zhang, X.: Invariant algebraic surfaces of the Rikitake system.J. Phys. A, Math. Gen. 33 (2000), 7613-7635. Zbl 0967.34002, MR 1802113, 10.1088/0305-4470/33/42/310
Reference: [31] McLachlan, R. I.: On the numerical integration of ordinary differential equations by symmetric composition methods.SIAM J. Sci. Comput. 16 (1995), 151-168. Zbl 0821.65048, MR 1311683, 10.1137/0916010
Reference: [32] McMillen, T.: The shape and dynamics of the Rikitake attractor.Nonlinear J. 1 (1999), 1-10.
Reference: [33] Moser, J.: Periodic orbits near an equilibrium and a theorem by Alan Weinstein.Commun. Pure Appl. Math. 29 (1976), 727-747. Zbl 0346.34024, MR 0426052, 10.1002/cpa.3160290613
Reference: [34] Pehlivan, I., Uyaroglu, Y.: Rikitake attractor and it's synchronization application for secure communication systems.J. Appl. Sci. 7 (2007), 232-236. 10.3923/jas.2007.232.236
Reference: [35] Puta, M.: Hamiltonian Mechanical Systems and Geometric Quantization.Mathematics and Its Applications (Dordrecht) 260. Kluwer Academic, Dordrecht (1993). Zbl 0795.70001, MR 1247960, 10.1007/978-94-011-1992-4
Reference: [36] Puta, M.: Lie-Trotter formula and Poisson dynamics.Int. J. Bifurcation Chaos Appl. Sci. Eng. 9 (1999), 555-559. Zbl 0970.37063, MR 1702129, 10.1142/S0218127499000390
Reference: [37] Rikitake, T.: Oscillations of a system of disk dynamos.Proc. Camb. Philos. Soc. 54 (1958), 89-105. Zbl 0087.23703, MR 0092682, 10.1017/S0305004100033223
Reference: [38] Tudoran, R. M., Aron, A., Nicoară, Ş.: On a Hamiltonian version of the Rikitake system.SIAM J. Appl. Dyn. Sys. 8 (2009), 454-479. Zbl 1159.70356, MR 2496764, 10.1137/080728822
Reference: [39] Tudoran, R. M., Gîrban, A.: On a Hamiltonian version of a three-dimensional LotkaVolterra system.Nonlinear Anal., Real World Appl. 13 (2012), 2304-2312. Zbl 1257.34037, MR 2911917, 10.1016/j.nonrwa.2012.01.025
Reference: [40] Turcotte, D. L.: Fractals and Chaos in Geology and Geophysics.Cambridge University Press, Cambridge (1997). Zbl 0785.58005, MR 1458893, 10.1017/CBO9781139174695
Reference: [41] Valls, C.: Rikitake system: Analytic and Darbouxian integrals.Proc. R. Soc. Edinb., Sect. A, Math. 135 (2005), 1309-1326. Zbl 1098.34028, MR 2191901, 10.1017/S030821050000439X
Reference: [42] Balasubramaniam, V. Vembarasan P.: Chaotic synchronization of Rikitake system based on T-S fuzzy control techniques.Nonlinear Dyn. 74 (2013), 31-44. Zbl 1281.34097, MR 3105173, 10.1007/s11071-013-0946-0
Reference: [43] Vincent, U. E.: Synchronization of Rikitake chaotic attractor using active control.Phys. Lett., A 343 (2005), 133-138. Zbl 1194.34091, 10.1016/j.physleta.2005.06.003
Reference: [44] Wei, Z., Zhang, W., Wang, Z., Yao, M.: Hidden attractors and dynamical behaviors in an extended Rikitake system.Int. J. Bifurcation Chaos Appl. Sci. Eng. 25 (2015), Article ID 1550028, 11 pages. Zbl 1309.34009, MR 3316322, 10.1142/S0218127415500285
Reference: [45] Wei, Z., Zhu, B., Yang, J., Perc, M., Slavinec, M.: Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays.Appl. Math. Comput. 347 (2019), 265-281. Zbl 1428.34055, MR 3880151, 10.1016/j.amc.2018.10.090
.

Files

Files Size Format View
AplMat_66-2021-3_3.pdf 677.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo