Previous |  Up |  Next

Article

Title: Regularity criterion for a nonhomogeneous incompressible Ginzburg-Landau-Navier-Stokes system (English)
Author: Pan, Nana
Author: Fan, Jishan
Author: Zhou, Yong
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 3
Year: 2021
Pages: 373-382
Summary lang: English
.
Category: math
.
Summary: We prove a regularity criterion for a nonhomogeneous incompressible Ginzburg-Landau-Navier-Stokes system with the Coulomb gauge in $\mathbb R^3$. It is proved that if the velocity field in the Besov space satisfies some integral property, then the solution keeps its smoothness. (English)
Keyword: Ginzburg-Landau
Keyword: Navier-Stokes
Keyword: regularity criterion
MSC: 35Q30
MSC: 35Q56
MSC: 76D03
MSC: 82D55
idZBL: 07361060
idMR: MR4263156
DOI: 10.21136/AM.2020.0298-19
.
Date available: 2021-05-20T13:34:02Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148899
.
Reference: [1] Akiyama, T., Kasai, H., Tsutsumi, M.: On the existence of the solution of the time dependent Ginzburg-Landau equations in $\mathbb R^3$.Funkc. Ekvacioj., Ser. Int. 43 (2000), 255-270. Zbl 1142.35561, MR 1795973
Reference: [2] Chen, J., Elliott, C. M., Qi, T.: Justification of a two-dimensional evolutionary GinzburgLandau superconductivity model.RAIRO, Modélisation Math. Anal. Numér. 32 (1998), 25-50. Zbl 0905.35084, MR 1619592, 10.1051/m2an/1998320100251
Reference: [3] Choe, H. J., Kim, H.: Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids.Commun. Partial Differ. Equations 28 (2003), 1183-1201. Zbl 1024.76010, MR 1986066, 10.1081/PDE-120021191
Reference: [4] Fan, J., Gao, H., Guo, B.: Uniqueness of weak solutions to the 3D Ginzburg-Landau superconductivity model.Int. Math. Res. Not. 2015 (2015), 1239-1246. Zbl 1317.35248, MR 3340353, 10.1093/imrn/rnt253
Reference: [5] Fan, J., Jiang, S.: Global existence of weak solutions of a time-dependent 3-D GinzburgLandau model for superconductivity.Appl. Math. Lett. 16 (2003), 435-440. Zbl 1055.35109, MR 1961437, 10.1016/S0893-9659(03)80069-1
Reference: [6] Fan, J., Jing, L., Nakamura, G., Tang, T.: Regularity criteria for a density-dependent incompressible Ginzburg-Landau-Navier-Stokes system in a bounded domain.Ann. Pol. Math. 125 (2020), 47-57. Zbl 07233404, MR 4121379, 10.4064/ap190616-15-4
Reference: [7] Fan, J., Ozawa, T.: Regularity criteria for the 3D density-dependent Boussinesq equations.Nonlinearity 22 (2009), 553-568. Zbl 1168.35416, MR 2480102, 10.1088/0951-7715/22/3/003
Reference: [8] Fan, J., Ozawa, T.: Global well-posedness of weak solutions to the time-dependent Ginzburg-Landau model for superconductivity.Taiwanese J. Math. 22 (2018), 851-858. Zbl 1404.35425, MR 3830823, 10.11650/tjm/180102
Reference: [9] Fan, J., Samet, B., Zhou, Y.: Uniform regularity for a 3D time-dependent Ginzburg-Landau model in superconductivity.Comput. Math. Appl. 75 (2018), 3244-3248. Zbl 1409.82022, MR 3785556, 10.1016/j.camwa.2018.01.044
Reference: [10] Fan, J., Zhang, Z., Zhou, Y.: Regularity criteria for a Ginzburg-Landau-Navier-Stokes in a bounded domain.Bull. Malays. Math. Sci. Soc. (2) 43 (2020), 1009-1024. Zbl 07173803, MR 4044915, 10.1007/s40840-019-00866-x
Reference: [11] Fan, J., Zhou, Y.: A note on the time-dependent Ginzburg-Landau model for superconductivity in $\mathbb{R}^n$.Appl. Math. Lett. 103 (2020), Article ID 106208, 7 pages. Zbl 07208182, MR 4050827, 10.1016/j.aml.2020.106208
Reference: [12] Fan, J., Zhou, Y.: A regularity criterion to the time-dependent Ginzburg-Landau model for superconductivity in $\mathbb{R}^n$.J. Math. Anal. Appl. 483 (2020), Article ID 123653, 7 pages. Zbl 07153756, MR 4037584, 10.1016/j.jmaa.2019.123653
Reference: [13] Hou, Q., Xu, X., Ye, Z.: Logarithmically improved blow-up criteria for the 3D nonhomogeneous incompressible Navier-Stokes equations with vacuum.Electron. J. Differ. Equ. 2016 (2016), Article ID 192, 12 pages. Zbl 1344.35080, MR 3547381
Reference: [14] Kim, H.: A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations.SIAM J. Math. Anal. 37 (2006), 1417-1434. Zbl 1141.35432, MR 2215270, 10.1137/S0036141004442197
Reference: [15] Kozono, H., Shimada, Y.: Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations.Math. Nachr. 276 (2004), 63-74. Zbl 1078.35087, MR 2100048, 10.1002/mana.200310213
Reference: [16] Tang, Q.: On an evolutionary system of Ginzburg-Landau equations with fixed total magnetic flux.Commun. Partial Differ. Equations 20 (1995), 1-36. Zbl 0833.35132, MR 1312698, 10.1080/03605309508821085
Reference: [17] Tang, Q., Wang, S.: Time dependent Ginzburg-Landau equation of superconductivity.Physica D 88 (1995), 139-166. Zbl 0900.35371, MR 1360881, 10.1016/0167-2789(95)00195-A
.

Files

Files Size Format View
AplMat_66-2021-3_4.pdf 205.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo