Previous |  Up |  Next

Article

Title: Consensus of a two-agent system with nonlinear dynamics and time-varying delay (English)
Author: Cheng, Ye
Author: Shi, Bao
Author: Ding, Liangliang
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 3
Year: 2021
Pages: 397-411
Summary lang: English
.
Category: math
.
Summary: To explore the impacts of time delay on nonlinear dynamics of consensus models, we incorporate time-varying delay into a two-agent system to study its long-time behaviors. By the classical 3/2 stability theory, we establish a sufficient condition for the system to experience unconditional consensus. Numerical examples show the effectiveness of the proposed protocols and present possible Hopf bifurcations when the time delay changes. (English)
Keyword: consensus
Keyword: multi-agent system
Keyword: nonlinear dynamics
Keyword: time-varying delay
Keyword: Hopf bifurcation
MSC: 34A34
MSC: 34D05
MSC: 34K25
idZBL: 07361062
idMR: MR4263158
DOI: 10.21136/AM.2021.0341-19
.
Date available: 2021-05-20T13:35:30Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148901
.
Reference: [1] Ahn, S. M., Ha, S.-Y.: Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises.J. Math. Phys. 51 (2010), Article ID 103301, 17 pages. Zbl 1314.92019, MR 2761313, 10.1063/1.3496895
Reference: [2] Albi, G., Balagué, D., Carrillo, J. A., Brecht, J. von: Stability analysis of flock and mill rings for second order models in swarming.SIAM J. Appl. Math. 74 (2014), 794-818. Zbl 1305.37044, MR 3215070, 10.1137/13091779X
Reference: [3] Atay, F. M.: The consensus problem in networks with transmission delays.Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 371 (2013), Article ID 20120460, 13 pages. Zbl 1353.94089, MR 3094343, 10.1098/rsta.2012.0460
Reference: [4] Bánhelyi, B., Csendes, T., Krisztin, T., Neumaier, A.: Global attractivity of the zero solution for Wright's equation.SIAM J. Appl. Dyn. Syst. 13 (2014), 537-563. Zbl 1301.34094, MR 3183042, 10.1137/120904226
Reference: [5] Bliman, P.-A., Ferrari-Trecate, G.: Average consensus problems in networks of agents with delayed communications.Automatica 44 (2008), 1985-1995. Zbl 1283.93013, MR 2531328, 10.1016/j.automatica.2007.12.010
Reference: [6] Cucker, F., Dong, J.-G.: A general collision-avoiding flocking framework.IEEE Trans. Autom. Control 56 (2011), 1124-1129. Zbl 1368.93261, MR 2815917, 10.1109/TAC.2011.2107113
Reference: [7] Cucker, F., Smale, S.: Emergent behavior in flocks.IEEE Trans. Autom. Control 52 (2007), 852-862. Zbl 1366.91116, MR 2324245, 10.1109/TAC.2007.895842
Reference: [8] Dehghani, M. A., Menhaj, M. B.: Communication free leader-follower formation control of unmanned aircraft systems.Robot. Auton. Syst. 80 (2016), 69-75. 10.1016/j.robot.2016.03.008
Reference: [9] Silva, V. de, Ghrist, R.: Coverage in sensor networks via persistent homology.Algebr. Geom. Topol. 7 (2007), 339-358. Zbl 1134.55003, MR 2308949, 10.2140/agt.2007.7.339
Reference: [10] Erban, R., Haškovec, J., Sun, Y.: A Cucker-Smale model with noise and delay.SIAM J. Appl. Math. 76 (2016), 1535-1557. Zbl 1345.60063, MR 3534479, 10.1137/15M1030467
Reference: [11] Jabin, P.-E., Motsch, S.: Clustering and asymptotic behavior in opinion formation.J. Differ. Equations 257 (2014), 4165-4187. Zbl 1316.34051, MR 3264419, 10.1016/j.jde.2014.08.005
Reference: [12] Krisztin, T.: On stability properties for one-dimensional functional differential equations.Funkc. Ekvacioj, Ser. Int. 34 (1991), 241-256. Zbl 0746.34045, MR 1130462
Reference: [13] Lin, P., Jia, Y.: Average consensus in networks of multi-agents with both switching topology and coupling time-delay.Physica A 387 (2008), 303-313. 10.1016/j.physa.2007.08.040
Reference: [14] Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory.IEEE Trans. Autom. Control 51 (2006), 401-420. Zbl 1366.93391, MR 2205679, 10.1109/TAC.2005.864190
Reference: [15] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays.IEEE Trans. Autom. Control 49 (2004), 1520-1533. Zbl 1365.93301, MR 2086916, 10.1109/TAC.2004.834113
Reference: [16] Sharifi, F., Mirzaei, M., Zhang, Y., Gordon, B. W.: Cooperative multi-vehicle search and coverage problem in uncertain environments.Unmanned Syst. 3 (2015), 35-47. 10.1142/S230138501550003X
Reference: [17] Shen, J.: Cucker-Smale flocking under hierarchical leadership.SIAM J. Appl. Math. 68 (2008), 694-719. Zbl 1311.92196, MR 2375291, 10.1137/060673254
Reference: [18] So, J. W.-H., Tang, X., Zou, X.: Stability in a linear delay system without instantaneous negative feedback.SIAM J. Math. Anal. 33 (2002), 1297-1304. Zbl 1019.34074, MR 1920631, 10.1137/S0036141001389263
Reference: [19] So, J. W.-H., Yu, J. S., Chen, M.-P.: Asymptotic stability for scalar delay differential equations.Funkc. Ekvacioj, Ser. Int. 39 (1996), 1-17. Zbl 0930.34056, MR 1401650
Reference: [20] Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G. J.: Protocols for self-organisation of a wireless sensor network.IEEE Pers. Commun. 7 (2000), 16-27. 10.1109/98.878532
Reference: [21] Wei, J.: Bifurcation analysis in a scalar delay differential equation.Nonlinearity 20 (2007), 2483-2498. Zbl 1141.34045, MR 2361242, 10.1088/0951-7715/20/11/002
Reference: [22] Wright, E. M.: A non-linear difference-differential equation.J. Reine Angew. Math. 194 (1955), 66-87. Zbl 0064.34203, MR 0072363, 10.1515/crll.1955.194.66
Reference: [23] Xiao, F., Wang, L.: State consensus for multi-agent systems with switching topologies and time-varying delays.Int. J. Control 79 (2006), 1277-1284. Zbl 1330.94022, MR 2252185, 10.1080/00207170600825097
Reference: [24] Yoneyama, T.: On the 3/2 stability theorem for one-dimensional delay-differential equations.J. Math. Anal. Appl. 125 (1987), 161-173. Zbl 0655.34062, MR 0891356, 10.1016/0022-247X(87)90171-5
Reference: [25] Zhang, X., Liu, L., Feng, G.: Leader-follower consensus of time-varying nonlinear multiagent systems.Automatica 52 (2015), 8-14. Zbl 1309.93018, MR 3310808, 10.1016/j.automatica.2014.10.127
Reference: [26] Zhou, N., Xia, Y.: Coordination control design for formation reconfiguration of multiple spacecraft.IET Control Theory Appl. 9 (2015), 2222-2231. MR 3442965, 10.1049/iet-cta.2015.0144
Reference: [27] Zuo, Z., Tie, L.: A new class of finite-time nonlinear consensus protocols for multi-agent systems.Int. J. Control 87 (2014), 363-370. Zbl 1317.93027, MR 3172512, 10.1080/00207179.2013.834484
.

Files

Files Size Format View
AplMat_66-2021-3_6.pdf 440.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo