Title:
|
Consensus of a two-agent system with nonlinear dynamics and time-varying delay (English) |
Author:
|
Cheng, Ye |
Author:
|
Shi, Bao |
Author:
|
Ding, Liangliang |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
66 |
Issue:
|
3 |
Year:
|
2021 |
Pages:
|
397-411 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
To explore the impacts of time delay on nonlinear dynamics of consensus models, we incorporate time-varying delay into a two-agent system to study its long-time behaviors. By the classical 3/2 stability theory, we establish a sufficient condition for the system to experience unconditional consensus. Numerical examples show the effectiveness of the proposed protocols and present possible Hopf bifurcations when the time delay changes. (English) |
Keyword:
|
consensus |
Keyword:
|
multi-agent system |
Keyword:
|
nonlinear dynamics |
Keyword:
|
time-varying delay |
Keyword:
|
Hopf bifurcation |
MSC:
|
34A34 |
MSC:
|
34D05 |
MSC:
|
34K25 |
idZBL:
|
07361062 |
idMR:
|
MR4263158 |
DOI:
|
10.21136/AM.2021.0341-19 |
. |
Date available:
|
2021-05-20T13:35:30Z |
Last updated:
|
2023-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148901 |
. |
Reference:
|
[1] Ahn, S. M., Ha, S.-Y.: Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises.J. Math. Phys. 51 (2010), Article ID 103301, 17 pages. Zbl 1314.92019, MR 2761313, 10.1063/1.3496895 |
Reference:
|
[2] Albi, G., Balagué, D., Carrillo, J. A., Brecht, J. von: Stability analysis of flock and mill rings for second order models in swarming.SIAM J. Appl. Math. 74 (2014), 794-818. Zbl 1305.37044, MR 3215070, 10.1137/13091779X |
Reference:
|
[3] Atay, F. M.: The consensus problem in networks with transmission delays.Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 371 (2013), Article ID 20120460, 13 pages. Zbl 1353.94089, MR 3094343, 10.1098/rsta.2012.0460 |
Reference:
|
[4] Bánhelyi, B., Csendes, T., Krisztin, T., Neumaier, A.: Global attractivity of the zero solution for Wright's equation.SIAM J. Appl. Dyn. Syst. 13 (2014), 537-563. Zbl 1301.34094, MR 3183042, 10.1137/120904226 |
Reference:
|
[5] Bliman, P.-A., Ferrari-Trecate, G.: Average consensus problems in networks of agents with delayed communications.Automatica 44 (2008), 1985-1995. Zbl 1283.93013, MR 2531328, 10.1016/j.automatica.2007.12.010 |
Reference:
|
[6] Cucker, F., Dong, J.-G.: A general collision-avoiding flocking framework.IEEE Trans. Autom. Control 56 (2011), 1124-1129. Zbl 1368.93261, MR 2815917, 10.1109/TAC.2011.2107113 |
Reference:
|
[7] Cucker, F., Smale, S.: Emergent behavior in flocks.IEEE Trans. Autom. Control 52 (2007), 852-862. Zbl 1366.91116, MR 2324245, 10.1109/TAC.2007.895842 |
Reference:
|
[8] Dehghani, M. A., Menhaj, M. B.: Communication free leader-follower formation control of unmanned aircraft systems.Robot. Auton. Syst. 80 (2016), 69-75. 10.1016/j.robot.2016.03.008 |
Reference:
|
[9] Silva, V. de, Ghrist, R.: Coverage in sensor networks via persistent homology.Algebr. Geom. Topol. 7 (2007), 339-358. Zbl 1134.55003, MR 2308949, 10.2140/agt.2007.7.339 |
Reference:
|
[10] Erban, R., Haškovec, J., Sun, Y.: A Cucker-Smale model with noise and delay.SIAM J. Appl. Math. 76 (2016), 1535-1557. Zbl 1345.60063, MR 3534479, 10.1137/15M1030467 |
Reference:
|
[11] Jabin, P.-E., Motsch, S.: Clustering and asymptotic behavior in opinion formation.J. Differ. Equations 257 (2014), 4165-4187. Zbl 1316.34051, MR 3264419, 10.1016/j.jde.2014.08.005 |
Reference:
|
[12] Krisztin, T.: On stability properties for one-dimensional functional differential equations.Funkc. Ekvacioj, Ser. Int. 34 (1991), 241-256. Zbl 0746.34045, MR 1130462 |
Reference:
|
[13] Lin, P., Jia, Y.: Average consensus in networks of multi-agents with both switching topology and coupling time-delay.Physica A 387 (2008), 303-313. 10.1016/j.physa.2007.08.040 |
Reference:
|
[14] Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory.IEEE Trans. Autom. Control 51 (2006), 401-420. Zbl 1366.93391, MR 2205679, 10.1109/TAC.2005.864190 |
Reference:
|
[15] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays.IEEE Trans. Autom. Control 49 (2004), 1520-1533. Zbl 1365.93301, MR 2086916, 10.1109/TAC.2004.834113 |
Reference:
|
[16] Sharifi, F., Mirzaei, M., Zhang, Y., Gordon, B. W.: Cooperative multi-vehicle search and coverage problem in uncertain environments.Unmanned Syst. 3 (2015), 35-47. 10.1142/S230138501550003X |
Reference:
|
[17] Shen, J.: Cucker-Smale flocking under hierarchical leadership.SIAM J. Appl. Math. 68 (2008), 694-719. Zbl 1311.92196, MR 2375291, 10.1137/060673254 |
Reference:
|
[18] So, J. W.-H., Tang, X., Zou, X.: Stability in a linear delay system without instantaneous negative feedback.SIAM J. Math. Anal. 33 (2002), 1297-1304. Zbl 1019.34074, MR 1920631, 10.1137/S0036141001389263 |
Reference:
|
[19] So, J. W.-H., Yu, J. S., Chen, M.-P.: Asymptotic stability for scalar delay differential equations.Funkc. Ekvacioj, Ser. Int. 39 (1996), 1-17. Zbl 0930.34056, MR 1401650 |
Reference:
|
[20] Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G. J.: Protocols for self-organisation of a wireless sensor network.IEEE Pers. Commun. 7 (2000), 16-27. 10.1109/98.878532 |
Reference:
|
[21] Wei, J.: Bifurcation analysis in a scalar delay differential equation.Nonlinearity 20 (2007), 2483-2498. Zbl 1141.34045, MR 2361242, 10.1088/0951-7715/20/11/002 |
Reference:
|
[22] Wright, E. M.: A non-linear difference-differential equation.J. Reine Angew. Math. 194 (1955), 66-87. Zbl 0064.34203, MR 0072363, 10.1515/crll.1955.194.66 |
Reference:
|
[23] Xiao, F., Wang, L.: State consensus for multi-agent systems with switching topologies and time-varying delays.Int. J. Control 79 (2006), 1277-1284. Zbl 1330.94022, MR 2252185, 10.1080/00207170600825097 |
Reference:
|
[24] Yoneyama, T.: On the 3/2 stability theorem for one-dimensional delay-differential equations.J. Math. Anal. Appl. 125 (1987), 161-173. Zbl 0655.34062, MR 0891356, 10.1016/0022-247X(87)90171-5 |
Reference:
|
[25] Zhang, X., Liu, L., Feng, G.: Leader-follower consensus of time-varying nonlinear multiagent systems.Automatica 52 (2015), 8-14. Zbl 1309.93018, MR 3310808, 10.1016/j.automatica.2014.10.127 |
Reference:
|
[26] Zhou, N., Xia, Y.: Coordination control design for formation reconfiguration of multiple spacecraft.IET Control Theory Appl. 9 (2015), 2222-2231. MR 3442965, 10.1049/iet-cta.2015.0144 |
Reference:
|
[27] Zuo, Z., Tie, L.: A new class of finite-time nonlinear consensus protocols for multi-agent systems.Int. J. Control 87 (2014), 363-370. Zbl 1317.93027, MR 3172512, 10.1080/00207179.2013.834484 |
. |