Previous |  Up |  Next

Article

Title: A sensitivity result for quadratic second-order cone programming and its application (English)
Author: Zhao, Qi
Author: Fu, Wenhao
Author: Chen, Zhongwen
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 3
Year: 2021
Pages: 413-436
Summary lang: English
.
Category: math
.
Summary: In this paper, we present a sensitivity result for quadratic second-order cone programming under the weak form of second-order sufficient condition. Based on this result, we analyze the local convergence of an SQP-type method for nonlinear second-order cone programming. The subproblems of this method at each iteration are quadratic second-order cone programming problems. Compared with the local convergence analysis done before, we do not need the assumption that the Hessian matrix of the Lagrangian function is positive definite. Besides, the iteration sequence which is proved to be superlinearly convergent does not contain the Lagrangian multiplier. (English)
Keyword: sensitivity
Keyword: quadratic second-order cone programming
Keyword: nonlinear second-order cone programming
Keyword: local convergence
MSC: 90C20
MSC: 90C22
MSC: 90C31
idZBL: 07361063
idMR: MR4263159
DOI: 10.21136/AM.2020.0278-19
.
Date available: 2021-05-20T13:35:55Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148902
.
Reference: [1] Alizadeh, F., Goldfarb, D.: Second-order cone programming.Math. Program. 95 (2003), 3-51. Zbl 1153.90522, MR 1971381, 10.1007/s10107-002-0339-5
Reference: [2] Bonnans, J. F., Ramírez, C. H.: Perturbation analysis of second-order cone programming problems.Math. Program. 104 (2005), 205-207. Zbl 1124.90039, MR 2179235, 10.1007/s10107-005-0613-4
Reference: [3] Bonnans, J. F., Shapiro, A.: Perturbation Analysis of Optimization Problems.Springer Series in Operations Research. Springer, New York (2000). Zbl 0966.49001, MR 1756264, 10.1007/978-1-4612-1394-9
Reference: [4] Freund, R. W., Jarre, F., Vogelbusch, C. H.: Nonlinear semidefinite programming: Sensitivity,convergence, and an application in passive reduced-order modeling.Math. Program. 109 (2007), 581-611. Zbl 1147.90030, MR 2296565, 10.1007/s10107-006-0028-x
Reference: [5] Fukuda, E. H., Fukushima, M.: The use of squared slack variables in nonlinear second-order cone programming.J. Optim. Theory Appl. 170 (2016), 394-418. Zbl 1346.90767, MR 3527702, 10.1007/s10957-016-0904-3
Reference: [6] Fukuda, E. H., Silva, P. J. S., Fukushima, M.: Differentiable exact penalty functions for nonlinear second-order cone programs.SIAM J. Optim. 22 (2012), 1607-1633. Zbl 1261.49006, MR 3029794, 10.1137/110852401
Reference: [7] Garcés, R., Gómez, W., Jarre, F.: A sensitivity result for quadratic semidefinite programs with an application to a sequential quadratic semidefinite programming algorithm.Comput. Appl. Math. 31 (2012), 205-218. Zbl 1254.90153, MR 2924763, 10.1590/S1807-03022012000100011
Reference: [8] Kanzow, C., Ferenczi, I., Fukushima, M.: On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity.SIAM J. Optim. 20 (2009), 297-320. Zbl 1190.90239, MR 2496902, 10.1137/060657662
Reference: [9] Kato, H., Fukushima, M.: An SQP-type algorithm for nonlinear second-order cone programs.Optim. Lett. 1 (2007), 129-144. Zbl 1149.90149, MR 2357594, 10.1007/s11590-006-0009-2
Reference: [10] Lobo, M. S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming.Linear Algebra Appl. 284 (1998), 193-228. Zbl 0946.90050, MR 1655138, 10.1016/S0024-3795(98)10032-0
Reference: [11] Pang, J.-S., Sun, D., Sun, J.: Semismooth homeomorphisms and strong stability of semidefinite and Lorentz cone complementarity problems.Math. Oper. Res. 28 (2003), 39-63. Zbl 1082.90115, MR 1961266, 10.1287/moor.28.1.39.14258
Reference: [12] Qi, L., Sun, J.: A nonsmooth version of Newton's method.Math. Program. 58 (1993), 353-367. Zbl 0780.90090, MR 1216791, 10.1007/BF01581275
Reference: [13] Sun, D.: The strong second-order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications.Math. Oper. Res. 31 (2006), 761-776. Zbl 1278.90304, MR 2281228, 10.1287/moor.1060.0195
Reference: [14] Wang, Y., Zhang, L.: Properties of equation reformulation of the Karush-Kuhn-Tucker condition for nonlinear second order cone optimization problems.Math. Meth. Oper. Res. 70 (2009), 195-218. Zbl 1190.49031, MR 2558410, 10.1007/s00186-008-0241-x
.

Files

Files Size Format View
AplMat_66-2021-3_7.pdf 300.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo