Title:
|
Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains (English) |
Author:
|
Guo, Ting |
Author:
|
Feng, Zhiming |
Author:
|
Bi, Enchao |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
2 |
Year:
|
2021 |
Pages:
|
373-386 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$. The generalized Fock-Bargmann-Hartogs domain is defined by inequality ${\rm e}^{\mu \|z\|^{2}}\sum _{j=1}^{m}|\omega _{j}|^{2p}<1$, where $(z,\omega )\in \mathbb {C}^n\times \mathbb {C}^m$. In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$ becomes a holomorphic automorphism if and only if it keeps the function $\sum _{j=1}^{m}|\omega _{j}|^{2p}{\rm e}^{\mu \|z\|^{2}}$ invariant. (English) |
Keyword:
|
generalized Fock-Bargmann-Hartogs domain |
Keyword:
|
holomorphic automorphism group |
MSC:
|
32H35 |
idZBL:
|
07361074 |
idMR:
|
MR4263175 |
DOI:
|
10.21136/CMJ.2020.0364-19 |
. |
Date available:
|
2021-05-20T13:41:03Z |
Last updated:
|
2023-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148910 |
. |
Reference:
|
[1] Ahn, H., Byun, J., Park, J.-D.: Automorphisms of the Hartogs type domains over classical symmetric domains.Int. J. Math. 23 (2012), Aticle ID 1250098, 11 pages. Zbl 1248.32001, MR 2959444, 10.1142/S0129167X1250098X |
Reference:
|
[2] Bi, E., Feng, Z., Tu, Z.: Balanced metrics on the Fock-Bargmann-Hartogs domains.Ann. Global Anal. Geom. 49 (2016), 349-359. Zbl 1355.32004, MR 3510521, 10.1007/s10455-016-9495-3 |
Reference:
|
[3] Bi, E., Tu, Z.: Rigidity of proper holomorphic mappings between generalized Fock-Bargmann-Hartogs domains.Pac. J. Math. 297 (2018), 277-297. Zbl 1410.32001, MR 3893429, 10.2140/pjm.2018.297.277 |
Reference:
|
[4] Dini, G., Primicerio, A. Selvaggi: Localization principle of automorphisms on generalized pseudoellipsoids.J. Geom. Anal. 7 (1997), 575-584. Zbl 0943.32006, MR 1669231, 10.1007/BF02921633 |
Reference:
|
[5] Ishi, H., Kai, C.: The representative domain of a homogeneous bounded domain.Kyushu J. Math. 64 (2010), 35-47. Zbl 1195.32009, MR 2662658, 10.2206/kyushujm.64.35 |
Reference:
|
[6] Kim, H., Ninh, V. T., Yamamori, A.: The automorphism group of a certain unbounded non-hyperbolic domain.J. Math. Anal. Appl. 409 (2014), 637-642. Zbl 1307.32017, MR 3103183, 10.1016/j.jmaa.2013.07.007 |
Reference:
|
[7] Kodama, A.: On the holomorphic automorphism group of a generalized complex ellipsoid.Complex Var. Elliptic Equ. 59 (2014), 1342-1349. Zbl 1300.32001, MR 3210305, 10.1080/17476933.2013.845177 |
Reference:
|
[8] Tu, Z.-H.: Rigidity of proper holomorphic mappings between equidimensional bounded symmetric domains.Proc. Am. Math. Soc. 130 (2002), 1035-1042. Zbl 0999.32007, MR 1873777, 10.1090/S0002-9939-01-06383-3 |
Reference:
|
[9] Tu, Z., Wang, L.: Rigidity of proper holomorphic mappings between certain unbounded non-hyperbolic domains.J. Math. Anal. Appl. 419 (2014), 703-714. Zbl 1293.32002, MR 3225398, 10.1016/j.jmaa.2014.04.073 |
. |