Previous |  Up |  Next

Article

Title: Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains (English)
Author: Guo, Ting
Author: Feng, Zhiming
Author: Bi, Enchao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 2
Year: 2021
Pages: 373-386
Summary lang: English
.
Category: math
.
Summary: We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$. The generalized Fock-Bargmann-Hartogs domain is defined by inequality ${\rm e}^{\mu \|z\|^{2}}\sum _{j=1}^{m}|\omega _{j}|^{2p}<1$, where $(z,\omega )\in \mathbb {C}^n\times \mathbb {C}^m$. In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$ becomes a holomorphic automorphism if and only if it keeps the function $\sum _{j=1}^{m}|\omega _{j}|^{2p}{\rm e}^{\mu \|z\|^{2}}$ invariant. (English)
Keyword: generalized Fock-Bargmann-Hartogs domain
Keyword: holomorphic automorphism group
MSC: 32H35
idZBL: 07361074
idMR: MR4263175
DOI: 10.21136/CMJ.2020.0364-19
.
Date available: 2021-05-20T13:41:03Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148910
.
Reference: [1] Ahn, H., Byun, J., Park, J.-D.: Automorphisms of the Hartogs type domains over classical symmetric domains.Int. J. Math. 23 (2012), Aticle ID 1250098, 11 pages. Zbl 1248.32001, MR 2959444, 10.1142/S0129167X1250098X
Reference: [2] Bi, E., Feng, Z., Tu, Z.: Balanced metrics on the Fock-Bargmann-Hartogs domains.Ann. Global Anal. Geom. 49 (2016), 349-359. Zbl 1355.32004, MR 3510521, 10.1007/s10455-016-9495-3
Reference: [3] Bi, E., Tu, Z.: Rigidity of proper holomorphic mappings between generalized Fock-Bargmann-Hartogs domains.Pac. J. Math. 297 (2018), 277-297. Zbl 1410.32001, MR 3893429, 10.2140/pjm.2018.297.277
Reference: [4] Dini, G., Primicerio, A. Selvaggi: Localization principle of automorphisms on generalized pseudoellipsoids.J. Geom. Anal. 7 (1997), 575-584. Zbl 0943.32006, MR 1669231, 10.1007/BF02921633
Reference: [5] Ishi, H., Kai, C.: The representative domain of a homogeneous bounded domain.Kyushu J. Math. 64 (2010), 35-47. Zbl 1195.32009, MR 2662658, 10.2206/kyushujm.64.35
Reference: [6] Kim, H., Ninh, V. T., Yamamori, A.: The automorphism group of a certain unbounded non-hyperbolic domain.J. Math. Anal. Appl. 409 (2014), 637-642. Zbl 1307.32017, MR 3103183, 10.1016/j.jmaa.2013.07.007
Reference: [7] Kodama, A.: On the holomorphic automorphism group of a generalized complex ellipsoid.Complex Var. Elliptic Equ. 59 (2014), 1342-1349. Zbl 1300.32001, MR 3210305, 10.1080/17476933.2013.845177
Reference: [8] Tu, Z.-H.: Rigidity of proper holomorphic mappings between equidimensional bounded symmetric domains.Proc. Am. Math. Soc. 130 (2002), 1035-1042. Zbl 0999.32007, MR 1873777, 10.1090/S0002-9939-01-06383-3
Reference: [9] Tu, Z., Wang, L.: Rigidity of proper holomorphic mappings between certain unbounded non-hyperbolic domains.J. Math. Anal. Appl. 419 (2014), 703-714. Zbl 1293.32002, MR 3225398, 10.1016/j.jmaa.2014.04.073
.

Files

Files Size Format View
CzechMathJ_71-2021-2_5.pdf 242.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo