Previous |  Up |  Next


Full entry | Fulltext not available (moving wall 24 months)      Feedback
extriangulated category; abelian category; cluster tilting subcategory; Gorenstein dimension
Let $\mathscr {C}$ be a triangulated category and $\mathscr {X}$ be a cluster tilting subcategory of $\mathscr {C}$. Koenig and Zhu showed that the quotient category $\mathscr {C}/\mathscr {X}$ is Gorenstein of Gorenstein dimension at most one. But this is not always true when $\mathscr {C}$ becomes an exact category. The notion of an extriangulated category was introduced by Nakaoka and Palu as a simultaneous generalization of exact categories and triangulated categories. Now let $\mathscr {C}$ be an extriangulated category with enough projectives and enough injectives, and $\mathscr {X}$ a cluster tilting subcategory of $\mathscr {C}$. We show that under certain conditions, the quotient category $\mathscr {C}/\mathscr {X}$ is Gorenstein of Gorenstein dimension at most one. As an application, this result generalizes the work by Koenig and Zhu.
[1] Demonet, L., Liu, Y.: Quotients of exact categories by cluster tilting subcategories as module categories. J. Pure Appl. Algebra 217 (2013), 2282-2297. DOI 10.1016/j.jpaa.2013.03.007 | MR 3057311 | Zbl 1408.18021
[2] Koenig, S., Zhu, B.: From triangulated categories to abelian categories: Cluster tilting in a general framework. Math. Z. 258 (2008), 143-160. DOI 10.1007/s00209-007-0165-9 | MR 2350040 | Zbl 1133.18005
[3] Liu, Y.: Abelian quotients associated with fully rigid subcategories. Available at (2019), 14 pages.
[4] Liu, Y., Nakaoka, H.: Hearts of twin cotorsion pairs on extriangulated categories. J. Algebra 528 (2019), 96-149. DOI 10.1016/j.jalgebra.2019.03.005 | MR 3928292 | Zbl 1419.18018
[5] Nakaoka, H., Palu, Y.: Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég. 60 (2019), 117-193. MR 3931945 | Zbl 07088229
[6] Zhou, P., Zhu, B.: Triangulated quotient categories revisited. J. Algebra 502 (2018), 196-232. DOI 10.1016/j.jalgebra.2018.01.031 | MR 3774890 | Zbl 1388.18014
[7] Zhou, P., Zhu, B.: Cluster-tilting subcategories in extriangulated categories. Theory Appl. Categ. 34 (2019), 221-242. MR 3935450 | Zbl 1408.18029
Partner of
EuDML logo